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1.0  Introduction 
The overall objective of this Unique Signature Detection (USD) Program is to relate the 

volatile chemical signature of human emanations to genetic composition of the MHC complex to 
determine if the chemical signature can uniquely identify individuals. RTI’s role in the larger 
program is to conduct a limited field study to investigate the relationship of MHC to volatile 
organic chemicals (VOCs) in sweat and to perform an independent statistical analysis of data 
generated by the three other research teams (Monell/Battelle, Draper Laboratory, Konrad Lorenz 
Institute). The specific goals of the project at RTI are:  

1. To identify and measure the concentrations of volatile organic chemicals (VOCs,   
unique chemical signature) in sweat,   

 
2. To investigate whether the VOCs are specific to an individual,  

 
3. To investigate how individual chemical signature is expressed by an examination 

of the relative concentrations of the volatiles or the presence/absence of the 
volatiles, 

 
4. To investigate the relationship between odor type with MHC (Human HLA), and 

 
5. To devise a Statistical Analysis Plan and perform independent statistical analysis 

of Program data. 
 
1.1 RTI Field Study 

To address the first goal, a field study was planned and conducted by RTI. In this study, 
identical twins and a family member (sibling or parent) were recruited. Each group went to either 
Williamsburg, VA, or Research Triangle Park, NC, for a four-day stay at a hotel. During this 
stay, daily sweat samples were collected onto polydimethylsiloxane membranes, as described in 
earlier reports to DARPA/ARO. A total of seven sets of twins were recruited. The goal was 30 
twin pairs. Given the relatively poor response rate and the need for project resources to 
adequately address the data processing and statistical analysis needs of the overall USD program, 
the field study was terminated.  

1.2 Data Processing and Statistical Analysis 

An important aspect of the project centered on the most effective manner in which to 
process the data (mainly raw data from gas chromatography/mass spectrometric analysis) 
obtained from the study teams. As the work unfolded, the teams’ different approaches as to 
handling the data became clear; this aspect was more complicated than had been anticipated. 
DARPA felt that there needed to be an effort in which the statistical analysis members of all of 
the teams communicated and defined issues as well as discussed options for approaching and 
solving the problems at hand. RTI coordinated that effort and, at the direction of DARPA, 
organized a working group that began with bi-weekly teleconferences and culminated in a 
workshop held at RTI International in Research Triangle Park, NC. The content and 



 

2 

recommendations that arose from that workshop were provided to ARO/DARPA in an earlier 
report. 

This report describes the approach that RTI developed to permit the analyses needed to 
address the USD objectives set forth by DARPA. It describes the procedures devised for 
importing raw data, all steps of processing the data, and the different approaches to statistical 
analysis. This report also includes instructions for using the various programs involved. Finally, 
the report demonstrates the applicability of the approach via application to real data sets acquired 
by other USD team members.  
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2.0 Data Processing 
2.1 Objectives 

Providing an independent processing and analysis approach to data provided by the three 
external research groups was an underlying objective of this program. Through numerous 
discussions with these providers and with DARPA project management, this objective was 
interpreted to require that only data generated by gas chromatography/mass spectrometry 
(GC/MS) be processed by RTI. Data would be provided in raw form, devoid of any post-
acquisition manipulation, either by the generating instrument or the attending instrument 
operator. A diversity of data formats created from software applications on multiple GC/MS 
systems would need to be accommodated. Furthermore, this data would be three-dimensional: 
consisting of time, intensity, and mass per unit charge (m/z) coordinates. 

Because the significance of chemical concentration or mass—as reflected by 
chromatographic peak size—on the characterization of odor signature is unknown, no 
presumptions could be made regarding the inclusion, or exclusion, of peaks on the basis of size. 
In terms of preliminary data processing, very large peaks were afforded the same importance as 
very small peaks. Similarly, no assumptions were made regarding homogeneity, or 
heterogeneity, of individual chromatographic responses. Our extensive experience in separation 
science has shown that chromatographic resolution is always imperfect, particularly when 
challenged by highly complex chemical mixtures as would be expected in biological systems. 

A significant advantage of our chromatographic data processing approach was realized 
through utilization of the m/z data dimension. Deconvolution of unresolved peaks, peak 
alignment and peak identification all utilized the uniqueness of the mass fragmentation pattern, 
in addition to the time dimension.  

Overall, the data processing approach which we promoted is applicable to GC/MS data 
from any commercially available instrument and requires no intervention by the instrument 
operator other than to create the raw data output file. 

2.2 Methods 

2.2.1 Receiving and Importing Raw Data  

At the provider’s discretion, raw data were transmitted to a secure FTP server at RTI 
under individual, password-protected FTP accounts established for each provider. In addition to 
the raw data itself, relevant sample analysis parameters (e.g., sample type, extraction procedure, 
chromatographic conditions, internal standards, replicates, etc.) were requested to facilitate RTI’s 
data processing and analysis. Raw data were moved from the FTP server to a project share and 
organized into folders based on information provided in the accompanying analysis parameters 
file. This share was accessible only to authorized individuals and was backed up nightly. 

Prior to initiating formal data processing on a given data set, representative 
chromatograms were visually evaluated, using the particular application software in which they 
were created, to assess component complexity, baseline drift, detector noise, and anomalous m/z 
assignment resulting from improper instrument tuning. As needed, project staff were consulted to 
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determine the impact of these assessments and to modify the data processing scheme. If 
necessary, instrument-related problems were brought to the attention of appropriate staff from 
the contributing organization and remedial actions implemented to correct the problem. 

Two GC/MS instrument manufacturer/data systems and, therefore, two data file formats 
were encountered on this program: Finnigan Xcalibur® and Agilent ChemStation®. Both of these 
data systems incorporated utilities for conversion to the generic netCDF format compatible with 
the subsequent peak deconvolution step. After the netCDF files were created, the raw data files 
were moved from the project share to archival storage. The archival storage location was backed 
up weekly. 

2.2.2 Detecting Components 

An investigation of relevant literature led to the discovery of a novel component 
detection method developed at the National Institute of Standards and Technology (NIST). The 
Automated Mass Spectral Deconvolution and Identification System (AMDIS, Version 2.6, 2004) 
program satisfied many of the criteria for data processing imposed by this project, including:   

■ It is compatible with many instrumental (Finnegan, HP, etc.) and netCDF file formats,  
■ Utilizes the m/z dimensionality of the data in addition to the chromatographic profile 
■ It retains spectral information for minor sample constituents 
■ It is configurable to allow adjustment for noise and chromatographic complexity 
■ Multiple possible components can be detected within a single peak  
■ Automatic baseline removal 
■ Customized mass spectral libraries can be created for specific sample/analyte types 
■ Capable of detecting MS instrumental tuning problems  

 
AMDIS developers were invited to RTI early in the project to present an overview of 

program features and to provide guidance on setup and configuration. Preliminary assessments 
on actual odortype datasets were encouraging and provided valuable insights into program 
configuration settings which would yield optimal results. These setting were balanced so as to 
detect all components in the chromatogram without generating spurious, or “false positive” 
components. The nondefault settings that were used were: 

■ Deconvolution 
• Resolution: Low 
• Sensitivity: Very Low 

■ Identification 
• Analysis Type: Simple 

 
Individual chromatographic runs were imported, individually, into AMDIS, either in the 

raw instrument file formats or, more typically, as netCDF files. Output text files were generated 
from each run to be compatible with subsequent data processing steps. 

2.2.3 Smoothing 

Component detection using AMDIS was especially sensitive to undersmoothed or 
oversmoothed data. When the data were  undersmoothed, AMDIS found a high level of noise in 
the chromatograms. As a result, chromatographic peaks that appeared by visual inspection to be 
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components were not detected by AMDIS. When the data were oversmoothed, AMDIS found a 
very low noise level. In these cases, AMDIS detected components at very small perturbations in 
the chromatogram, even though visual inspection led us to believe that these were nothing more 
than noise in the data. 

The literature describes many methods for smoothing. We spent a significant amount of 
time deciding which smoothing method was appropriate for our needs. We focused on methods 
that could be applied to each individual ion chromatogram (IIC), because AMDIS operates on 
that level, in addition to the total ion chromatogram (TIC). Poorly smoothed IICs cause just as 
many problems for AMDIS as do poorly smoothed TICs. Also, we eliminated methods, such as 
CODA (Windig et al., 1996) or the Morphological Score (Shen et al., 2001), that remove or 
penalize entire IICs. We found that although the IICs may be unsmooth, they still may provide 
important component information somewhere in the chromatogram. The methods we considered 
were: 

■ Fourier transform. We used the fft and ifft functions in SAS/IML (Version 8.02, 
1999) and tested five different cut-off points: 50, 60, 70, 80, and 90. For each 
cutoff point P, we set the upper (100-P)% of the Fourier coefficients to 0. 

■ Savitzky-Golay (SG) filter. We used the sgolayfilt function as contributed to 
Octave (http://octave.sourceforge.net/index/f/sgolayfilt.html) and ported to 
Matlab (Release 11). For parameters, we used a polynomial order of 2 and tested 
window widths of 11, 17, and 21, as well as some earlier testing with window 
widths less than 9. 

■ Wavelets. We used the call wavft and call wavift routines in SAS/IML and tested 
37 different combinations of parameters. 

■ Splines. We used the call spline routine in SAS/IML and tested smoothing 
parameters of 100 and 1000. 

 
We applied the different smoothing methods to a few representative sample files, and we 

selected the methods that appeared to work the best for further study. For these best methods, we 
chose one representative sample file and let AMDIS detect components in the smoothed version 
of the file. We tried three different AMDIS parameter combinations. We evaluated the 
performance of each smoothing method by subjectively noting the level of false positives 
(AMDIS detected a component when it appeared to be noise) and false negatives (AMDIS failed 
to detect what appeared to be a component). We assigned levels of very low, low, moderate, 
high, and very high to the numbers of false positives and false negatives. Table 2-1 provides a 
summary of our results. The methods that displayed the best combination of false positives and 
false negatives were Spline(1000), SG(17), and SG(21), which each scored very low false 
positives and low false negatives. Each of the three performed approximately the same, so we 
used other criteria for making our final choice. SG(17) and SG(21) both did well using our 
default AMDIS settings, but because Spline(1000) required modified AMDIS settings, we 
eliminated it. We chose SG(17) over SG(21) as our smoothing method because it gave us similar 
performance with less modification of the data. 
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Table 2-1. Levels of False Positives and False Negatives for Various Smoothing Methods  

Smoothing Method 
AMDIS 
Settings 

Detected 
Components 

False 
Positives False Negatives 

Unsmoothed M/M 182 High Moderate 
Unsmoothed L/L 36 Moderate High 
Unsmoothed L/VL 13 Very low Very high 
Wavelet (22) M/M 114 High Moderate 
Wavelet (22) L/VL 14 Very low Very high 
Wavelet (34) M/M 132 High Moderate 
Wavelet (34) L/L 40 Very low High 
Wavelet (34) L/VL 20 Very low Very high 
Spline (100) M/M 117 Moderate Low 
Spline (100) L/L 60 Very low Moderate 
Spline (100) L/VL 29 Very low Very high 
Spline (1000) M/M 70 Very low Low 
Spline (1000) L/L 42 Very low High 
Spline (1000) L/VL 21 Very low Very high 

SG (11) M/M 690 Very high Very low 
SG (11) L/VL 45 Very low Moderate 
SG (17) M/M 759 Very high Very low 
SG (17) L/L 152 High Very low 
SG (17) L/VL 77 Very low Low 
SG (21) M/M 682 Very high Very low 
SG (21) L/VL 86 Very low Low 

The AMDIS Settings column indicates the settings for Resolution and Sensitivity, where M=Medium, 
L=Low, and VL=Very Low. 

 
Not all experiments required data smoothing. In fact, most did not because the data were 

already smooth enough in raw form to allow AMDIS to perform adequately. To decide whether 
to smooth the data, we first performed our data processing steps as if we were not smoothing. 
After running AMDIS, if the number of detected components did not match our expectations 
based on visual review of the files, we inspected the files more closely and decided whether 
smoothing would be beneficial. If we did smooth the data, we verified that it was indeed 
beneficial after running AMDIS on the smoothed data. 

The application of the selected smoothing method required several steps. The CDF file 
containing the full matrix of intensity values at every retention time and m/z value was converted 
to Matlab format using the NetCDF toolbox for Matlab 
(http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html). The SG 
smoothing algorithm was then applied in Matlab. Finally, the smoothed Matlab dataset was 
converted back to CDF format, again using the NetCDF toolbox. The resulting CDF file was 
input to AMDIS. 

2.2.4 Clustering Components 

One requirement of our data analysis methods was that we could construct a list of 
sample files in which each detected compound appeared. Because AMDIS detected components 
separately in each file without knowledge of components in the other files, we had to find a way 
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to connect components representing the same compound together across files. We decided to use 
a clustering approach to make these connections. In this approach, components with sufficiently 
similar retention times and mass spectra would be placed into the same cluster. The cluster 
would later be linked to some chemical compound, and all the files represented in that cluster 
would be the files in which the compound appeared, thus satisfying our data analysis 
requirement. 

Because retention time was one of the clustering dimensions, we had to guard against 
situations where chromatograms were poorly aligned, which would cause components 
representing the same compound to have different retention times. If the difference were large 
enough, the components would be placed into separate clusters. To help avoid these errors, we 
applied a coarse alignment algorithm to the files before performing any clustering. This 
algorithm adjusted the retention times of all components so that each internal standard and other 
commonly detected component had identical retention times across all files. 

2.2.4.1 Finding Internal Standards and Landmarks 

The first step in the coarse alignment algorithm was to find internal standards and other 
commonly detected components that we called “landmarks.” The data providers supplied the 
identities of the internal standards and their expected retention times. Based on the identity, we 
were able to look up the expected mass spectra of the internal standards. We chose candidates for 
landmarks through visual inspection of the chromatograms. AMDIS output was used to 
determine their expected retention times and mass spectra. 

Armed with the expected retention times and mass spectra, internal standards and 
landmarks could be identified manually in every file. However, given the large number of files, 
we had to automate the process to make it feasible. We implemented a searching algorithm to 
identify which of the AMDIS-detected components in each file were most likely to be the 
components of interest. After completing the search, we reviewed the assignments to check for 
any clues that might indicate a missed assignment and modified the assignments manually as 
necessary. 

To run the search procedure for a target component (either an internal standard or 
landmark), the user supplied the expected retention time, the expected mass spectrum, and a 
retention time window. The expected mass spectrum was limited to the three to five mass values 
with the highest intensities. We found that this was enough to make a good identification, and 
more mass values tended to cause too many incorrect assignments. The search was restricted 
only to components detected within the retention time window. This was used to prevent the 
algorithm from making false assignments to components that were so far away from the expected 
retention time that they could not have possibly come from the same compound. The size of an 
appropriate retention time window depended on how well-aligned the data seemed to be already. 
We generally started with a window radius of 0.5 minutes and modified it if necessary. 

For every component in the retention time window, the algorithm calculated the 
Euclidean distance between the detected component’s AMDIS-produced mass spectrum and the 
expected mass spectrum. The calculation was limited only to those mass values included in the 
expected mass spectrum. Components were disqualified if either of the following conditions was 
true: 
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■ Any mass value in the expected mass spectrum was absent from the component’s 
mass spectrum. 

■ The mass value with the highest intensity value in the component’s mass 
spectrum was absent from the expected mass spectrum. 

 
Among the remaining components in the retention time window, the one with the 

smallest distance was assigned as the match to the target component. 

When reviewing the assignments, we looked for several indicators that an incorrect 
assignment was made for a particular file: 

■ The distance between the expected mass spectrum and the mass spectrum for the 
assigned component was large relative to the rest of the files. 

■ The distance between the expected retention time and the retention time for the 
assigned component was large relative to the rest of the files. 

■ No assignment was made. This meant either that no component was detected 
within the retention time window or that all detected components were 
disqualified. 

 
If an assignment looked suspicious, we manually inspected the file to determine whether 

the assignment was indeed incorrect and, if so, how to correct it. Possible corrective measures 
included adding or removing mass values from the expected mass spectrum, increasing or 
decreasing the size of the retention time window, manually making the correct assignment, or 
discarding the file from analysis. The first two measures were taken when there was more of a 
global problem, such that the same modification would fix several incorrect assignments. 
Making assignments manually was performed when only one or a few files had a problem. 
Discarding a file from analysis was necessary when our inspection of it led us to believe that it 
was of low chromatographic quality. 

When deciding how many landmarks to include, we took into consideration the number 
of internal standards and the quality of the alignment before any processing. If the set of files 
were well aligned already, we felt that a total of three standards and landmarks would be 
sufficient. We tried to get one in the early part of the chromatogram, one in the middle part, and 
one in the later part. When files were not well aligned, we increased the number of landmarks, 
but not to more than about five or six. 

When choosing which components to use as landmarks, we looked for components that 
were distributed throughout the retention time span and for components that appeared in most of 
the files. We found that a good starting point was to look in blank sample files for landmark 
candidates. We started with the blanks because any compounds that appeared in the blanks 
should have appeared in all the true sample files, also. If the blanks did not contain enough 
landmark candidates, then we randomly chose other sample files in which to look for candidates. 
After identifying the candidates, we used the search algorithm described above to see how many 
files contained the candidate. If this number was sufficiently large (approximately 75%), then we 
accepted the candidate as a landmark. 
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2.2.4.2 Coarse Alignment 

Once all the internal standards and landmarks had been found, we applied a coarse 
alignment algorithm to ensure that the chromatograms were at least somewhat aligned. The 
coarse alignment algorithm had two steps: 

1. It adjusted the retention times of internal standards and landmarks so that the new 
retention times were identical across all files for each standard or landmark. The 
target retention time for each standard or landmark was the average of the 
unadjusted retention times across all files. 

2. It adjusted the retention times of all other components so that the ratio of the 
following two distances remained the same before and after the coarse alignment: 
a. the distance from the component to the nearest standard or landmark 

earlier in the run, and 
b. the distance from the component to the nearest standard or landmark later 

in the run. 
 

All retention time adjustments were performed multiplicatively, not additively. That is, 
all adjustments represented a stretch or compression of the retention time axis, not a shift of the 
axis. 

2.2.4.3 Multidimensional Clustering 

After the coarse alignment, we applied a clustering algorithm to collect components from 
different files into groups likely to represent the same chemical compound. We used the 
SAS/STAT (Version 8.02, 1999) procedure fastclus to perform the cluster analysis. We set the 
procedure to perform a disjoint cluster analysis using nearest centroid sorting, and we used the 
retention time and mass spectrum as the clustering dimensions. The inclusion of both retention 
time and mass spectrum as clustering dimensions was very important to the success of the 
clustering algorithm. We found that ignoring either would result in numerous errors, generally 
from placing components into the same cluster when they actually represented different chemical 
compounds. 

Ignoring retention time caused problems because components with very similar mass 
spectra were often detected at very different retention times. Large differences in retention times 
in otherwise well-aligned chromatograms imply that the components must represent different 
chemical compounds. Had we clustered on mass spectra alone, though, such components would 
likely have been placed into the same cluster. Including the retention time helped ensure that 
these components were split into separate clusters. 

Ignoring the mass spectra caused problems because components representing different 
compounds often had overlapping elution profiles. Therefore their retention times were very 
similar. If we were clustering only on retention time, these overlapping components would most 
likely be placed into the same cluster. Including the mass spectra helped ensure that these 
components were split into separate clusters. 

All detected components from all files were included in the cluster analysis. Each 
component was characterized by a vector that included its adjusted retention time, in minutes, 
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and the intensity at each mass value in its mass spectrum. The mass intensities had been scaled 
by AMDIS so that the largest for each component was set to 999. If the data contained m/z 
values in the range 40 to 400, then the vector was of length 362 (1 retention time value and 361 
m/z values). The vector was used to calculate distances in the clustering algorithm. Because the 
vector consisted almost entirely of mass spectrum values and because the scale of the retention 
times was smaller than the scale of the intensities, the distance between components was 
dominated by the distance between mass spectra. However, we believed retention time was a 
very important factor and should have more of a contribution to the distance formula. To achieve 
this, we applied a weight factor to the retention time dimension before calculating the distances. 

Two parameters were supplied to the clustering algorithm: the retention time weight and 
the maximum cluster radius. We experimented with different parameter values to find a 
reasonable combination, and we settled on a retention time weight of 5000 and a cluster radius of 
1500. After running the clustering procedure with these parameters, each detected component 
was assigned to a cluster. The number of clusters varied quite a bit from one experiment to the 
next, from a few hundred to several thousand. 

Because of imperfect component detection and spectrum deconvolution by AMDIS and 
the nature of the clustering algorithm, some clustering errors occurred. Cluster errors included 
having components from the same chemical compound present in more than one cluster and 
having components from different chemical compounds present in the same cluster. Effort was 
made in later steps when flagging heterogeneous clusters (section 2.b.vii.) and performing 
statistical dimension reduction (section 3.b.) to detect and handle some of these errors. 

2.2.5 Finding Core Clusters 

Every sample file contained many compounds originating from numerous sources, 
including diet, environment, the sample workup process, and genetics. We were interested only 
in compounds that were genetic in origin. For this reason, we took several steps to remove or at 
least flag compounds we suspected were not genetic. The first step was to identify "core" 
clusters, or those that had consistent representation among files from at least one genetic type. 
We reasoned that if a compound is derived from a subject's genetics, then that compound should 
show up in every sample file. Of course, because of instrument detection limits, noisy data, and 
other abnormalities, a truly genetic compound has some probability of not being detected in a 
given sample file, and so we would expect a detection rate somewhat less than 100% even for a 
genetic compound. The expected rate depends on the probability of detection. A compound with 
a detection rate significantly below the expected rate is likely not a genetic compound. Because 
we did not know the probability of detection, we experimented with different expected rates and 
chose the one that gave the most reasonable results while still making sense in the context of the 
experimental design. 

Detection rates were set at each stage of the experimental design. For example, suppose 
the design was set up so that for each genetic type there were 10 donors, each donor donated 3 
samples, and each sample was subjected to 5 replicate analyses. We set a minimum detection 
rate at the replicate level, at the sample level, and at the donor level. At the replicate level, our 
minimum detection rate may have been 60%, meaning a cluster had to be represented in at least 
60% (3/5) of the replicates for a particular sample to be classified as core for that sample. At the 
sample level, our minimum detection rate may have been 100%, meaning a cluster had to be core 
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in all samples for a particular donor to be classified as core for that donor. Finally, at the donor 
level, our minimum detection rate may have been 70%, meaning that a cluster had to be core for 
at least 70% (7/10) of the donors from a particular genetic type to be classified as core for that 
genetic type. Clusters classified as core for at least one genetic type were designated as core 
clusters. 

In the example above, we set detection rates to a constant percentage at each level. We 
used this method when the design was balanced (i.e., when each genetic type had the same 
number of donors, each donor donated the same number of samples, etc.). In unbalanced designs, 
we believed that using a constant percentage may not be appropriate. Being detected in 50% of 
the files may be very different when the 50% is 1 out of 2 compared to when the 50% is 10 out 
of 20. It is very dependent on the probability of detection. In these cases, we used a hypothesis 
testing approach to decide whether or not a cluster was core at the unbalanced level. Suppose we 
are at the sample level. Our null hypothesis was that the compound represented by the cluster 
was not present for that donor. Under the null hypothesis, the number of samples in which the 
cluster was present followed a binomial distribution with n equal to the number of samples and p 
equal to the probability of a false positive, that is, the probability that a compound was present in 
a sample given that it was not present in the donor. Using an alpha level of 0.05, we calculated 
the minimum number of samples in which the cluster must be present to reject the null 
hypothesis and conclude that it was indeed present in the donor. We set the probability of a false 
positive, and, because we did not know the true value of this probability, we experimented with 
different values to obtain a manageable number of clusters (approximately 100). 

Once we had classified all clusters as either core or not core, we kept only the core 
clusters for further analysis. 

2.2.6 Searching the NIST Library 

Chemical identities were assigned to each component using the NIST MS Search 
Program for the NIST/EPA/NIH Mass Spectral Library (V2.0). Text files containing individual 
mass spectra were created in a previous step and were imported directly into the MS Search 
program. The individual mass spectra were matched against the library and the best two library 
“fits” output to a SAS program which compiled all results into a single dataset. 

To assess the accuracy of this automated approach, independent compound 
identifications were made, on a small subset of spectra, by an expert in mass spectral 
interpretation. Out of 44 total identifications, the expert completely agreed with the automated 
identification in 25 cases (57%); an additional 11 identifications (25%) by the NIST program 
were found to be on heterogeneous components; these components had a primary chemical 
compound, which was correctly identified, and at least one other compound of lesser amount. 
The expert deemed the remaining 8 (18%) identifications by the NIST program to be incorrect 
and determined that the most probable reason for the incorrect assignment was multiple chemical 
species contributing to a single mass spectrum. Overall, the NIST program was able to determine 
the principal chemical species responsible for the mass spectrum in 82% of cases. 
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2.2.7 Flagging Heterogeneous Clusters 

Given a likely identity for each detected component, we were able to assign identities to 
each core cluster. Because a cluster consisted of many components that were grouped together 
based on their similar characteristics, we expected most of the components in a cluster to have 
the same identity. When this was true, we assigned that common identity to the cluster. When it 
was not true, however, it indicated that there may have been an error in forming the cluster, and 
so we flagged it as heterogeneous. One such error could be that the cluster contained components 
that were derived from several different compounds instead of just one. Later analyses were 
performed with and without heterogeneous clusters. These clusters were not completely excluded 
from later analyses because it was possible that the components were all derived from the same 
compound, but that compound just was not in the NIST library. In this case we may expect the 
results to be scattered over several different compounds that did happen to be present in the 
library. 

To decide whether a cluster was heterogeneous, we first collected the NIST library search 
results for all components in that cluster. We included the top two hits for each component. Later 
investigation revealed that although the results were largely the same for our cases, using the top 
one hit instead of top two hits is a slightly better method. Once we had all the search results, we 
computed a weighted frequency distribution of the hits, where the match factor from the search 
result was used as the weight. Using this weight value gave the most emphasis to matches 
considered to be the best. If the highest frequency library hit had a frequency less than 60%, then 
the cluster was flagged as heterogeneous. 

2.2.8 Quantification 

Our statistical analysis methods required some measure of the "quantity" of each 
compound in each file. We used the area under the compound's elution profile as the base of our 
quantification. We then normalized this area to the area of the internal standard(s) to account for 
varying levels of injection amount in each sample. Finally, we applied a log transformation to the 
normalized area. 

We chose to use the area of the internal standard instead of the area of the entire 
chromatogram as our normalization factor because we believed the area of the entire 
chromatogram could be heavily influenced by the presence or absence of environmental 
compounds. Therefore there is no reason to believe that the area of the entire chromatogram 
should be equal across sample files. Conversely, the area of the internal standards should be the 
same across sample files, and so it is a more appropriate normalization factor. 

The area under the compound's elution profile was provided indirectly by AMDIS. The 
area produced by AMDIS had been normalized to the area of the entire chromatogram. Because 
we wanted to use another normalization factor, we first un-normalized the AMDIS-produced 
area. We then divided the areas of all components in a sample file by the area of the internal 
standard for that file. In experiments with multiple internal standards, we used the mean of the 
internal standard areas as the normalization factor. In experiments with no internal standards, we 
did not perform normalization. 
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We next replaced any areas equal to 0 with some small nonzero area. An area was equal 
to 0 if a compound was not detected in a particular file. We wanted to be conservative by 
assuming that the compound was present but was below the detection limit. We replaced the 0 
areas with 1/10 of the smallest detected area for the experiment. 

Finally, we applied a natural log transformation to the data to make the data more 
symmetrical in distribution and to help stabilize the variance. These two data characteristics were 
assumptions of some of the analysis methods. 
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3.0 Dimension Reduction 
3.1 Biochemical 

Among the identifications assigned to each cluster were chemical species which are 
highly improbable in biological systems. These identifications were classified as “impossible” 
and included: 

■ siloxanes and other silicon-containing species  
■ halogenated compounds (F, Cl, Br, I) 
■ phthalates and compounds containing benzenedicarboxylic acid moieties 

 
Siloxanes are commonly associated with treated glass surfaces and are, therefore, almost 

certainly artifacts of sample handling or chromatographic analysis. Although halide ions, notably 
chloride ion, are very common in the human body as important electrolytic contributors, 
halogenated compounds are extremely rare and, if found, are generally associated with exposure 
to a hazardous chemical (e.g., carbon tetrachloride). Finally, phthalates are included on the 
“impossible” list because of their ubiquitous presence in the environment. They are intermediate 
chemicals in the formulations of common plastics and, as such, are pervasive in the environment. 
Identifications which included any of these chemical species were retained in the dataset and 
were flagged with an “I.” 

In addition to the impossible compounds, an additional list of “environmental” chemical 
species was compiled from the cumulative findings of Draper Laboratories and Monell Chemical 
Senses Institute. These environmental compound types included: 

■ Food antioxidants 
■ Tobacco components 
■ Coffee components 
■ Fragrances and flavors (food additives) 
■ Industrial Pollutants 
■ Insecticides/Pesticides 
■ Medications 
■ Plastics/plasticizers 
■ Volatile Organic Compounds  

 
As in the case of the “impossible” compounds, these identifications were retained in the 

dataset and flagged with an “E.” In addition to their anthropogenic sources, many of these 
“environmental” chemicals (e.g., selected ketones) could also emanate from human biological 
sources. Consequently, subsequent statistical analyses were performed both with and without 
these identifications in the data. 

3.2 Statistical 

Two statistical procedures are used to further remove the chemical compounds that do 
not provide significant help in distinguishing the genotypes. These two methods—analysis of 
variance and stepwise linear discriminant analysis—are described below. 
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3.2.1 ANOVA 

Compounds whose concentration levels are significantly different for different genetic 
types are likely to be important in distinguishing those genetic types. Conversely, compounds 
whose concentration levels are essentially the same from one genetic type to the next are likely 
to be unimportant in distinguishing the genetic types. One way to identify whether a compound’s 
concentration level differs significantly between genetic types is to use ANOVA. For each 
experiment, we performed an ANOVA on each compound independently and used the result to 
judge whether the compound significantly distinguished the genetic types in that experiment. 
This resulted in a smaller set of compounds known as the ANOVA-reduced set. 

The following is the general ANOVA model we used for each compound: 

Yijklm = gi + dij + tijk + sijkl + εijklm 
 
where: 

Yijklm  = observed quantity of the compound for replicate m from sample l from 
donation day k from donor j from genetic type i 

gi  = effect of genetic type i 
dij  = effect of donor j from genetic type i 
tijk  = effect of donation day k from donor j from genetic type i 
sijkl  = effect of sample l from donation day k from donor j from genetic type i 
εijklm  = random error 

 
Each effect was nested within the preceding effect in the model, and all effects except the 

genetic type effect were random effects. For experiments that did not include all levels of the 
model, the inapplicable levels were dropped. The ANOVA models were run using the 
SAS/STAT (Version 8.02, 1999) procedure glm. Compounds were considered significant if the 
p-value of the overall F test was below an alpha level. The alpha level was initially set to 0.05, 
but was moved up or down if the number of signification compounds was deemed too low or too 
high. 

3.2.2 Stepwise Linear Discriminant Analysis (SLDA)  

The problem of linking chemical profile of a sample uniquely to a genotype can be cast in 
a classification framework. Just as it is possible to match a fingerprint to the fingerprints with 
known sources in a database, one can match a chemical profile to the chemical profiles with 
known sources in a database. Unlike a fingerprint, however, the chemical profile of a genotype 
changes significantly with environmental factors, and all the chemical profiles produced under 
different conditions form a distribution, which requires a group of chemical profiles to 
characterize the distributions. Assuming that each genotype corresponds to a unique distribution 
of chemical profiles, the problem becomes how to assign an observed chemical profile to the 
genotype associated with it. This is therefore a classification problem, and we expect that a 
variable selection procedure based on a classification method should be suitable for selecting the 
best classification variables. We applied Stepwise Linear Discriminant Analysis (SLDA) for 
variable selection.  
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For a set of observations containing one or more quantitative variables and a 
classification variable defining groups of observations, a classification rule develops a 
discriminant criterion to classify each observation into one of the groups. The derived 
discriminant criterion can be used to classify a new observation with unknown group 
membership. Linear discriminant analysis (LDA) develops a discriminant criterion that is linear 
in the quantitative variables. The original linear discriminant analysis method applied to two-
group problems. It can be generalized to handle the many-group case. In this general approach, 
one assumes that each group has a multivariate normal distribution, and a classification criterion 
using a measure of generalized squared distance is developed. The classification criterion is 
based on the pooled covariance matrix (or the individual within-group covariance matrix). Each 
observation is placed in the group from which it has the smallest generalized squared distance. 

SLDA is used to select a subset of the quantitative variables for use in discriminating 
among the groups. This analysis is a useful prelude to further disciminant analyses.  

Stepwise selection is very similar to that of stepwise regression. It begins with no 
variables in the model. At each step, the model is examined. If the variable in the model that 
contributes least to the discriminatory power of the model as measured by Wilks' lambda fails to 
meet the criterion to stay, then that variable is removed. Otherwise, the variable not in the model 
that contributes most to the discriminatory power of the model is entered. When all variables in 
the model meet the criterion to stay and none of the other variables meets the criterion to enter, 
the stepwise selection process stops.  

Compared with ANOVA, SLDA is expected to have two advantages: 

1. It takes into account the correlations among classification variables, and 
2. It tries to select the variables with the most discriminatory power. 

When we applied SLDA to the simulated as well as real data, we used the intensities of 
the chemical compounds as classification variables and genotype as the classification label. We 
selected a subset of the chemical compounds. 
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4.0 Statistical Methods for Classification  
4.1 Linear Methods 

4.1.1 Linear Discriminant Analysis (LDA)  

This method is discussed in the above section. This is the simplest method for solving the 
classification problem. The advantage of this method is its simplicity and effectiveness. It is a 
very efficient method when the intensities approximately follow a multivariate normal 
distribution. It may not perform well when the genotypes can not be linearly separated, or the 
data distribution drastically differs from multivariate normal distribution. When applied to the 
real data, the intensities of the selected chemical compounds were used to classify the genotypes 
of the samples. 

4.1.2 CDA 

Canonical discriminant analysis is a dimension-reduction technique related to principal 
component analysis and canonical correlation. In a canonical discriminant analysis, linear 
combinations of the quantitative variables that provide maximal separation between the groups 
are constructed. Given a classification variable and several quantitative variables, canonical 
discriminant analysis derives canonical variables, linear combinations of the quantitative 
variables that summarize between-class variation in much the same way that principal 
components summarize total variation.  

Given two or more groups of observations with measurements on several quantitative 
variables, canonical discriminant analysis derives a linear combination of the variables that has 
the highest possible multiple correlation with the groups. This maximal multiple correlation is 
called the first canonical correlation. The coefficients of the linear combination are the 
canonical coefficients or canonical weights. The variable defined by the linear combination is the 
first canonical variable or canonical component. The second canonical correlation is obtained by 
finding the linear combination uncorrelated with the first canonical variable that has the highest 
possible multiple correlation with the groups. The process of extracting canonical variables can 
be repeated until the number of canonical variables equals the number of original variables or the 
number of groups minus one, whichever is smaller. Thus, dimension reduction is achieved. The 
classification can be performed on the canonical variables. 

Compared with LDA, CDA offers the function of dimension reduction. This is useful 
when the number of chemical compounds and the number of genotypes are large. On the other 
hand, the dimension reduction may reduce the effectiveness of the classification algorithm. In 
our simulated and real data sets, the number of genotypes was not terribly large and the number 
of chemical compounds was successfully reduced to a manageable amount. Thus the advantage 
of CDA was not obvious. However, in the future scenarios where the number of genotypes is 
large and further dimension reduction becomes important, this method would be worth 
investigating. Because this is a linear classification method, it would not be effective if the 
genotypes cannot be separated linearly.  
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4.2 Nonlinear Methods 

We investigated two nonlinear classification methods— Support Vector Machines 
(SVM) and Generalized Discriminant Analysis (GDA)—in case the data contained some 
nonlinearity that could be useful to help separate the genotypes and would adversely impact the 
performance of the linear methods.  

4.2.1 SVM 

SVM are algorithms that can perform binary and multi-group classification and real 
valued function approximation (regression estimation) tasks. They are a family of learning 
algorithms that is considered one of the most efficient methods in many real-world applications.  

For a two-group classification problem where the two groups can be perfectly separated 
by a linear function (i.e., a hyperplane), SVM finds the hyperplane that separates the two groups 
with the largest margin, where margin is the smallest distance of a data point to the hyperplane. 
When the two groups can not be separated by a hyperplane, SVM can transform the data into a 
high dimensional space such that in this new space the groups can be perfectly separated. SVM 
can then treat the problem as a linear problem in the new space. Some versions of SVM do not 
require the groups being perfect separated. Instead, they try to find the hyperplane that minimizes 
the classification error. SVM have been generalized to classify many-group case. SVM use 
something called kernel to transform the data into the high dimensional space. Using kernel 
makes the transformation implicit and the computation efficient. Many different kernels have 
been developed, and each of them corresponds to a particular nonlinear transformation. The most 
popular kernel is the Gaussian kernel, which has been proven to be efficient and adequate by 
many applications. We used the Gaussian kernel for the current study. 

It is not clear that if the genotypes can be linearly separated or not. However, given the 
relative small sample size, the data points in the high dimensional space of the intensities are 
very sparse. Chances are that any nonlinearity in the data will not be adequately captured by the 
data. So the advantage of the SVM is not realized by small samples and LDA may be adequate. 
This was demonstrated by the application to the real data. In future analysis where the sample 
size is significantly larger, SVM is expected to be a very competitive method. It may capture 
some nonlinearity in the data which will be missed by linear methods.  

4.2.2 Generalized Discriminant Analysis (GDA) 

The Generalized Discriminant Analysis (GDA) is a nonlinear extension of the ordinary 
Linear Discriminant Analysis (LDA). Using kernel functions, the data are mapped nonlinearly to 
a high dimensional feature space with linear properties, similar to the case of SVM. In the new 
feature space, the classical LDA is applied. As with SVM, using different kernels, a wide class of 
nonlinearities are covered. Some literature (Baudat and Anouar, 2000) suggested that GDA had 
similar performance as SVM, based on limited simulations. However, GDA is not as well 
studied or widely applied as SVM. One advantage of SVM is that it does not assume normality 
of the data in the feature space.
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5.0 Application to Simulated Data 
Our primary objective here was to compare our analysis methods. We hoped that, 

through the use of standard data, the benefits of the different approaches could be evaluated 
while concurrently creating a systematic walk-through of the approaches to help illustrate the 
logic for instructional purposes. We sought to answer the following questions to help us meet our 
primary objective: 

1. How often do the variable selection methods choose the right set of compounds? 
How often are there false positives? False negatives? 

2. What are the classification rates for each classification method? 
3. Do the classification rates differ depending on which variable selection method is 

used? 
 

We used separate training and testing datasets when analyzing the simulated data to 
answer these questions. 

A secondary objective was to measure cross-validation bias. Real-world situations 
generally do not have enough data to use separate training and testing datasets, and one 
alternative is to use cross-validation instead. Many believe that cross-validation tends to increase 
the classification rate above what would have been observed had separate training and testing 
datasets been used. This difference is known as the cross-validation bias. To measure cross-
validation bias, we calculated the classification rate using cross-validation for some of the 
training datasets. We then compared the distributions of these rates to those obtained using 
separate testing datasets. 

Appendix A provides a set of instructions for how the various components are used. 
Appendix B provides a list of necessary software. Software was delivered to DARPA via 
uploading to the USD web site. 

5.1 Data Specifications 

5.1.1 Linear Datasets 

Each simulated dataset consisted of randomly generated, independent observations from 
a multivariate normal distribution with a given mean and covariance structure. An observation 
contained intensity values for several hypothetical compounds. These intensity values 
represented GC/MS analysis data after it had undergone our data processing steps. Different 
genotypes were simulated by generating data using different means in the multivariate normal 
distribution. 

We generated simulated datasets using several scenarios. We compared the selection and 
classification methods in the presence of a low number of genotypes (3) and a higher number of 
genotypes (10), in the presence of low genotype separation and high genotype separation, and in 
the presence of low correlation between compounds (ρ=0.2) and high correlation (ρ=0.8). 
Table 5-1 provides a summary of the scenarios considered in the simulation. 
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Table 5-1. Summary of Linear Simulation Scenarios 

Scenario 
Number of 
Genotypes 

Genotype 
Separation 

Correlation 
Between 

Compounds 
1 Low Low Low 
2 Low Low High 
3 Low High Low 
4 Low High High 
5 High Low Low 
6 High Low High 
7 High High Low 
8 High High High 

 
 

An observation Yi from genotype i was generated as: 

Yi = (yi1, ..., yiC) ~ N(µi, Σ) 
 
where 

 (yi1, ..., yiC)  =  the vector of intensity values in the observation 
 C  =  the number of compounds in the model 
 µi  =  the mean intensity vector for genotype i 
 Σ  =  the covariance matrix 
 

For training datasets, 20 observations were generated for each genotype. This value was 
chosen because it is typical of what we have seen in the real data we have analyzed. For testing 
datasets, 200 observations were generated for each genotype. 

We chose to use five compounds (C=5) in all our models. We designated the first three 
compounds as those that would separate the genotypes. We decided on three because it was the 
most we could have and still visualize the separation graphically. We added another compound 
that would not distinguish the genotypes, but would be correlated with the first three compounds. 
Finally, we added a fifth compound that would neither distinguish the genotypes nor be 
correlated with any of the other compounds. These last two compounds add some noise factors 
into the model and allow us to test how well our variable selection methods work. 

We used a geometric approach to choosing the mean intensity vectors. The approach was 
slightly different in the 3-genotype model and the 10-genotype model. In both cases, though, the 
vector was specified as: 

µi = (µi1, µi2, µi3, 0, 0) 
 
where µij is the mean of compound j in genotype i. We set the means for compounds 4 and 5 to a 
constant across all genotypes to force those two compounds not to contribute to the separation of 
the genotypes. We set the means for the remaining compounds geometrically. Each dimension in 
3-dimensional space represents a compound. The mean of each genotype, then, can be 
represented as a point in 3-dimensional space. For the 3-genotype model, we envisioned the 
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genotypes as equally spaced points on a sphere centered at the origin. By controlling the radius 
of the sphere, we could control the distance between the genotypes. For the low separation 
scenarios, we set the radius to 0.5, and for the high separation scenarios, we set the radius to 1.5. 
On the unit sphere, the locations of the genotype means in the 3-genotype model are given in 
Table 5-2.  

Table 5-2. Locations of Genotype Means in the 3-Genotype Model 

Genotype Mean Location 
1 (0.707, 0.500, -0.500) 
2 (0.259, -0.683,  0.683) 
3 (-0.966,  0.183, -0.183) 

 
For the 10-genotype model, we envisioned the genotypes as points on the 6 faces and 4 of 

the corners of a cube centered at the origin. By controlling the size of the cube, we could control 
the distance between the genotypes. For the low separation scenarios, we set the distance from 
the origin to a face of the cube to 0.3, and for the high separation scenarios, we set this distance 
to 0.5. On the cube where the distance from the origin to a face is 1, the locations of the genotype 
means in the 10-genotype model are given in Table 5-3. 

Table 5-3. Locations of Genotype Means in the 10-Genotype Model 

Genotype Mean Location 
1 (0, 0, 1) 
2 (1, 0, 0) 
3 (0, 0, -1) 
4 (-1, 0, 0) 
5 (0, 1, 0) 
6 (0, -1, 0) 
7 (-1, 1, 1) 
8 (1, 1, -1) 
9 (-1, -1, 1) 

10 (1, -1, -1) 
 

The covariance matrix is constructed as: 

 
where ρ is the pairwise covariance between compounds. In the low correlation scenarios we set ρ 
to 0.2, and in the high correlation scenarios we set ρ to 0.8. We set all the pairwise covariances 
equal because we wanted to limit the number of input parameters, limiting the number of 
confounding factors. Even though we expect real data to exhibit negative correlations as well as 
positive correlations, we elected to look at positive correlations only in this simulation. We 
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assigned the same covariance matrix to all genotypes for simplicity and because we see no 
reason to believe the covariance structure would differ from one genotype to the next. 

Note that when constructing the covariance matrix, we assigned a value of 1 along the 
diagonal elements. This means the within-genotype variance for each compound is forced to 
be 1. In addition, it means the covariance matrix may also be thought of as a correlation matrix. 

Genotype separation is characterized by the ratio of the between-genotype variance to the 
within-genotype variance. The within-genotype variance for every compound was set to 1. The 
between-genotype variance for a compound j, which is heavily influenced by the distance 
between the genotype means, is given by the formula: 

where: 
 

2
Bσ  =  between-genotype variance 

k  =  number of genotypes 
ni  =  sample size in genotype i 
µij  =  the mean of compound j in genotype i 

iµ  =  the mean of the mean vector in genotype i 
 

Table 5-4 summarizes the genotype separation for the low separation and high separation 
scenarios. 

Table 5-4. Summary of Genotype Separation 

Number of 
Genotypes 

Genotype 
Separation 

Between/Within 
Variances 

Pairwise 
Distances 

3 Low 1.9 – 3.8 0.9 
3 High 16.9 – 33.8 2.6 

10 Low 1.2 0.4 - 1.0 
10 High 3.3 0.7 – 1.7 

 
 
5.1.2 Nonlinear Datasets 

Each simulated dataset consisted of randomly generated, independent observations. Like 
the linear data, an observation contained intensity values for several hypothetical compounds. 
These intensity values represented GC/MS analysis data after it had undergone our data 
processing steps. 

We used three schemes for generating nonlinear datasets. For each scheme, datasets were 
created using different scenarios, or combinations of parameters. In all scenarios, the number of 
hypothetical compounds was set to 3 to ease visualization of the data in 3-dimensional space. 
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Because the number of compounds was so small, we did not apply our variable selection 
methods to the nonlinear data. Instead, we focused only on comparing the classification methods. 

For training datasets, 20 observations were generated for each genotype we included in 
the model. This value was chosen because it is typical of what we have seen in the real data we 
have analyzed. For testing datasets, 200 observations were generated for each genotype. 

Scheme 1. The intensity values for the first two compounds were simulated with random 
values from a standard normal distribution. The intensity values for the third compound was set 
to the sum of the squares of the first two compounds, plus random noise generated from a 
standard normal distribution. In summary, each observation Y was generated as: 

Y = (y1, y2, y3), 
 
where: 
 
 y1 ~ N(0, 1) 
 y2 ~ N(0, 1) 
 r ~ N(0, 1) 
 y3 = y1

2 + y2
2 + r + Ci 

 
In addition, to simulate different genotypes, an offset value was added to y3. The actual value 
was dependent on the genotype i, and is depicted in the above specification as Ci. The magnitude 
of the offset affected the distance between each genotype and was varied in different scenarios, 
as shown in Table 5-5. 
 

Table 5-5. Summary of Scenarios Under Nonlinear Scheme 1. 

Offset Value 
Scenario Number of Genotypes Genotype 1 Genotype 2 Genotype 3 

9 3 1 2 3 
10 3 2 4 6 
11 3 3 6 9 

 
Visually, data for a single genotype created under this scheme looked like a bowl or a 

vase. When all genotypes were combined together, data created under this scheme looked like a 
stack of bowls or vases. 

Scheme 2. Data were created under Scheme 2 in much the same way as in Scheme 1. In 
fact, the only difference was that the random value assigned to y1 was forced to be greater than 0. 
This requirement was implemented by discarding observations whenever y1 was less than or 
equal to 0, and generating more observations until the desired number was met. Visually, data 
created under this scheme looked like a stack of bowls or vases that have been sliced vertically 
down the center. A summary of the scenarios created under Scheme 2 is presented in Table 5-6. 
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Table 5-6. Summary of Scenarios Under Nonlinear Scheme 2 

Offset Value 
Scenario Number of Genotypes Genotype 1 Genotype 2 Genotype 3 

12 3 2 4 6 
 

Scheme 3. A nonlinear transformation was applied to data from one of the simulated 
linear datasets. See the linear data specifications section for details on how the linear data was 
simulated. A nonlinear observation Y = (y1, y2, y3) was created from a linear observation X = (x1, 
x2, x3) by the transformation: 

y1  = x1 
y2  = x2

2 
y3  =  x3

3 
 

A summary of the scenarios created under Scheme 3 is presented in Table 5-7. 

Table 5-7. Summary of Scenarios Under Nonlinear Scheme 3 

Scenario Number of Genotypes Source Linear Scenario 
13 3 2 
14 3 4 
15 10 8 

 
5.2 Comparison of Results 

Results are based on 200 simulated training datasets and 1 simulated testing dataset. We 
applied the variable selection methods to each training dataset, and used the selected variables 
from the training datasets to train the various classification methods. We then used the testing 
dataset to calculate the classification rates for each method. Finally, we computed classification 
rates using cross-validation on 20 of the training datasets. 

5.2.1  Assessing Variable Selection Methods 

The first question we examined is the effectiveness of the variable selection methods. As 
stated previously, two methods were used in reducing the dimension of the datasets. One is a 
univariate approach based on the ANOVA method. The other is the Stepwise Linear 
Discriminant Analysis which takes into account the relationships (or correlations among the 
variables). Table 5-8 shows how well the two variable selection methods did in the linear 
simulations. Recall that in order to test the variable selection procedures, among the five 
components created in the data, the first three would contribute to separating the genotypes and 
the last two would not. A variable selection method performed “Exactly Right” if it picked the 
first three components and not the last two. A method produced “False Positive” only if it picked 
the first three components and one or more of the last two. A method produced a “False Positive 
and False Negative” if it missed at least one of the first three components and also picked at least 
one of the last two components. The desired situations are that the method produced either an 
“Exactly Right” result or a “False Positive” result, because our main purpose is not to include all 
important chemicals in data analysis and not to exclude them during the data reduction stage. 
Table entries indicate the percentage times the various types of results a method produced. 
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As indicated by table, in general, SLDA outperformed the ANOVA method, especially in 
the scenarios where the genotype separation is low (scenarios 1, 2, 5, and 6). It is not a surprise 
given that it uses more information in deciding which variables to retain. Another observation is 
that the number of false positives for SLDA tends to jump up for the scenarios with high 
correlation (scenarios 2, 4, 6, and 8). We think this is because component #4 is correlated with 
the first three, and SLDA is picking up the correlation structure between #4 and the first three 
components and therefore leading to the higher rate of false positives. 

Table 5-8. Percentages of Times Variable Selection Methods Pick the Correct Variables 

          
  ANOVA SLDA ANOVA SLDA ANOVA SLDA ANOVA SLDA
         

3 genotypes Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Exactly right 5.5 13.5 1.5 64.0 91.5 85.5 89.5 49.0 
False positives only 0.0 1.0 2.0 24.5 8.5 14.5 10.5 51.0 
False negatives only 85.5 77.5 86.0 10.0 0.0 0.0 0.0 0.0 
False positives and false 

negatives 9.0 8.0 10.5 1.5 0.0 0.0 0.0 0.0 
Exact right + false positive 5.5 14.5 3.5 88.5 100.0 100.0 100.0 100.0 
         

10 genotypes Scenario 5 Scenario 6 Scenario 7 Scenario 8 
Exactly right 15.0 19.5 17.5 57.0 80.5 78.5 80.0 22.0 
False positives only 1.0 2.5 4.5 36.0 14.0 19.5 14.5 78.0 
False negatives only 72.5 64.5 71.0 7.0 5.0 1.5 4.5 0.0 
False positives and false 

negatives 11.5 13.5 7.0 0.0 0.5 0.5 1.0 0.0 
Exact right + false positive 16.0 22.0 22.0 93.0 94.5 98.0 94.5 100.0 
          
 
5.2.2 Assessing Classification Methods 

The next theme of interest in our simulation study is to assess the performance of the 
classification methods under various scenarios. Table 5-9 shows a summary of the classification 
results on the simulated linear data.  

Regardless of the number of genotypes, all the algorithm perform significantly better than 
random chance. The rate of correct classification, however, declines as the number of groups 
increases. When genotypes are further apart (scenarios 3, 4, 7, and 8), the rate of correct 
classification is generally higher. When correlation among variables is high (scenarios 2, 4, 6, 
and 8), results are more impressive. The two linear classification methods, LDA and CDA, 
performed significantly better than did the nonlinear classification methods. GDA’s poor 
performance, however, is rather surprising. 
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Table 5-9. Rate of Correct Classification for Linear Data 

                  
Correct Classification Rate Using Test Dataset       

 SVM GDA LDA CDA 
  ANOVA SLDA ANOVA SLDA ANOVA SLDA ANOVA SLDA 

Scenario 1 (3 genotypes) 0.444 0.451 0.345 0.352 0.456 0.462 0.457 0.463
Scenario 2 (3 genotypes) 0.506 0.690 0.368 0.436 0.517 0.700 0.518 0.706
Scenario 3 (3 genotypes) 0.854 0.853 0.660 0.663 0.856 0.855 0.859 0.858
Scenario 4 (3 genotypes) 0.986 0.986 0.943 0.951 0.989 0.989 0.990 0.990
Scenario 5 (10 genotypes) 0.106 0.108 0.101 0.102 0.135 0.138 0.134 0.138
Scenario 6 (10 genotypes) 0.127 0.174 0.103 0.107 0.168 0.229 0.168 0.229
Scenario 7 (10 genotypes) 0.152 0.152 0.104 0.103 0.224 0.224 0.224 0.225
Scenario 8 (10 genotypes) 0.292 0.308 0.122 0.118 0.353 0.369 0.354 0.370
         
Correct Classification Rate Through Cross-Validation      

 SVM GDA LDA CDA 
  ANOVA SLDA ANOVA SLDA ANOVA SLDA ANOVA SLDA 

Scenario 1 (3 genotypes) 0.4508 0.4571 0.3539 0.3549 0.5032 0.5146 0.5015 0.5126
Scenario 2 (3 genotypes) 0.4988 0.6703 0.3673 0.4154 0.5553 0.6937 0.5522 0.6936
Scenario 3 (3 genotypes) 0.8384 0.8386 0.5794 0.5868 0.8491 0.8514 0.8513 0.8518
Scenario 4 (3 genotypes) 0.9842 0.9858 0.9414 0.9481 0.9879 0.9896 0.9872 0.9898
Scenario 5 (10 genotypes) 0.1037 0.1045 0.1017 0.1044 0.1449 0.1472 0.1459 0.1476
Scenario 6 (10 genotypes) 0.1282 0.1774 0.1037 0.1047 0.1834 0.2405 0.1832 0.2389
Scenario 7 (10 genotypes) 0.1508 0.1458 0.1041 0.1034 0.2139 0.2149 0.2138 0.2150
Scenario 8 (10 genotypes) 0.2728 0.2798 0.1250 0.1226 0.3475 0.3652 0.3454 0.3640
                  
 
 

Table 5-10 shows the rate of correct classification for simulated nonlinear datasets. As 
with the linear datasets, the number of groups and the distance between the groups influences the 
classification results. For example, the rates of correct classification under scenario 15 is much 
lower than in scenario14 due to the much larger number of groups to classify. Also, as the 
distance between groups centers increases among scenarios 9, 10, and 11, the classification 
results improves. Similarly, all methods did better in scenarios 14 than in scenario 13. Overall, 
SVM provided the best performance across all nonlinear types we have tried. GDA, on the other 
hand, in most cases still lagged behind all other methods in terms of the rate of correct 
classification. It came a very close second when the distances between the genotypes are large 
(Scenario 11). LAD turned out to be a very reasonable method to use even when the data is 
nonlinear. Its performance was second on all but two occasions. Although our experiment is very 
limited, combining results from the linear datasets, LDA should clearly be considered as a 
classification method in almost all situations. 



 

27 

Table 5-10. Rate of Correct Classification for Simulated Nonlinear Data 

          
Correct Classification Rate Using Test Dataset   

  SVM GDA LDA CDA 
Scenario 9 (3 genotypes) 0.4738 0.3688 0.4261 0.3469
Scenario 10 (3 genotypes) 0.5892 0.5223 0.5511 0.3348
Scenario 11 (3 genotypes) 0.7069 0.6920 0.6685 0.3333
Scenario 12 (3 genotypes) 0.5976 0.4846 0.5960 0.3334
Scenario 13 (3 genotypes) 0.5464 0.3957 0.5183 0.5336
Scenario 14 (3 genotypes) 0.8541 0.7364 0.8039 0.7570
Scenario 15 (10 genotypes) 0.2219 0.1201 0.1860 0.2009
     
Correct Classification Rate Through Cross-Validation  

  SVM GDA LDA CDA 
Scenario 9 (3 genotypes) 0.4208 0.3767 0.4322 0.3446
Scenario 10 (3 genotypes) 0.5542 0.4467 0.5628 0.3338
Scenario 11 (3 genotypes) 0.7083 0.7075 0.6788 0.3333
Scenario 12 (3 genotypes) 0.5783 0.4317   
Scenario 13 (3 genotypes) 0.5100 0.3858   
Scenario 14 (3 genotypes) 0.8475 0.7542   
          

 
 
5.2.3 Validation Through Cross-Validation 

Throughout the project, we have used cross-validation for the purpose of evaluating the 
performance of the classification methods when applied to real data. In order to assess this 
validation approach, we examine how it compared to the results obtained by using a test dataset. 
The generation of the test dataset is documented in Section 5-1. Table 5-11 summarizes the 
comparison of rate of correct classification obtained through the two methods. For most cases, 
the difference between rates produced by the two methods is very small. Statistical testing results 
show that none of the differences is statistically significant. Understanding the limitation of a 
single simulation scenario may have, we also calculated the average differences for all methods 
(see Table 5-12), and they are also statistically insignificant. 
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Table 5-11. Difference in Rates of Correct Classification between Test Dataset and Cross-
Validation - Linear Data 

                      
   SVM GDA LDA CDA   
    ANOVA SLDA ANOVA SLDA ANOVA SLDA ANOVA SLDA   
  Scenario 1 (3 genotypes) 0.0065 0.0058 0.0084 0.0030 0.0476 0.0528 0.0449 0.0498   
  Scenario 2 (3 genotypes) -0.0073 -0.0194 -0.0009 -0.0206 0.0387 -0.0061 0.0339 -0.0121   
  Scenario 3 (3 genotypes) -0.0153 -0.0139 -0.0807 -0.0766 -0.0069 -0.0033 -0.0080 -0.0058   
  Scenario 4 (3 genotypes) -0.0014 -0.0007 -0.0017 -0.0029 -0.0011 0.0004 -0.0027 -0.0002   
  Scenario 5 (10 genotypes) -0.0025 -0.0032 0.0007 0.0029 0.0104 0.0093 0.0117 0.0100   
  Scenario 6 (10 genotypes) 0.0008 0.0034 0.0003 -0.0019 0.0156 0.0119 0.0154 0.0101   
  Scenario 7 (10 genotypes) -0.0011 -0.0066 0.0003 -0.0001 -0.0097 -0.0093 -0.0103 -0.0099   
  Scenario 8 (10 genotypes) -0.0196 -0.0286 0.0032 0.0048 -0.0054 -0.0039 -0.0083 -0.0061   
             
  Average -0.0050 -0.0079 -0.0088 -0.0114 0.0112 0.0065 0.0096 0.0045   
                      
 
 
Table 5-12. Difference in Rates of Correct Classification between Test Dataset and Cross-

Validation - Nonlinear Data 

          
  SVM GDA LDA CDA 
Scenario 9 (3 genotypes) 0.0529 -0.0079 -0.0061 0.0024 
Scenario 10 (3 genotypes) 0.0350 0.0757 -0.0117 0.0010 
Scenario 11 (3 genotypes) -0.0014 -0.0155 -0.0103 0.0000 
Scenario 12 (3 genotypes) 0.0193 0.0530   
Scenario 13 (3 genotypes) 0.0364 0.0099   
Scenario 14 (3 genotypes) 0.0066 -0.0178   
Scenario 15 (3 genotypes) 0.2219 0.1201   
     
Average 0.0529 0.0311 -0.0094 0.0011 
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6.0 Application to Real Data 
6.1 Comparison of Results  

Both linear and nonlinear classification methods were applied to four datasets. Details of 
the datasets are described as follows: 

■ Draper Mouse Urine Dataset 5:  This dataset consists of chromatograms of 67 
urine samples from 20 mice of three strains. Among the 67 samples, 23 samples 
are from six AKR-H2k mice, 21 are from seven B6-H2b mice, and 23 are from 
seven B6-H2k mice. Samples were analyzed by Solid-Phase Microextraction (SPME) 
with GC/MS. Each sample has one replicate.  

■ Draper Human Plasma Dataset 7:  This dataset consists of chromatograms of 170 
plasma samples from 16 human donors of 13 unique HLA types. Each donor 
contributed up to three samples. Up to 13 replicate analyses were performed for 
each sample. Samples were analyzed by SPME with GC/MS. 

■ Monell Human Urine SPME Dataset: This dataset consists of chromatograms of 
21 urine samples from seven human donors that can be grouped into two HLA-A 
supertypes. Because of the differences in other HLA genes (e.g., HLA-B, C, etc.), 
we chose to treat the seven donors as having seven unique HLA types. Each 
donor has three samples; two replicate analyses were performed for each sample. 
The samples were analyzed by SPME-GC/MS. 

■ KL Human Twin Sweat Dataset: This dataset consists of chromatograms of 62 
sweat samples from 31 pairs of twins (22 identical twins and 9 fraternal twins). 
Each donor contributed one sample. One replicate analysis was performed for 
each sample. Samples were analyzed by SPME with GC/MS. 

The steps used for these four datasets were similar:  (1) chromatogram conversion and 
smoothing, if necessary; (2) component detection using AMDIS; (3) chromatogram alignment 
using multidimensional clustering method; (4) component quantification and normalization; 
(5) initial dimension reduction by elimination of impossible compounds; (6) further dimension 
reduction by statistical methods (ANOVA and SLDA); and (7) classification (LDA, CDA, GDA 
and SVM).  

Tables 6-1 through 6-4 list the classification results for these four datasets.  
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Table 6-1. The rate of correct classification for Draper Mouse Urine Dataset 5 

VOC Sets Correct Classification Rates (%) by Cross Validation 
Set N LDA CDA GDA SVM 
Core – AI 151 79 31 66 78 
Core – AI – E 91 64 46 67 79 
Core – AI –SLDA 19 97 31 93 90 
Core – AI – E – SLDA 14 94 31 90 94 
Core – AI – ANOVA 61 69 33 82 79 
Core – AI – E – ANOVA 37 72 42 81 81 
Method artifacts (AI), environmental (E), and inconsistent elements identified using stepwise linear discriminate 
analysis (SLDA) or analysis of variance (ANOVA) were removed (subtracted) from the set of core chemicals prior 
to the classification using the indicated models. In the “n” column, the number of components remaining is 
indicated. 
 

Table 6-2. The rate of correct classification for Draper Human Plasma Dataset 7 

VOC Sets Correct Classification Rates (%) by Cross Validation 
Set N LDA CDA GDA SVM 
Core – AI 46 42 31 39 44 
Core – AI – E 10 36 29 36 42 
Core – AI –SLDA 36 55 18 48 49 
Core – AI – E – SLDA 8 38 29 31 42 
Core – AI – ANOVA 40 43 31 40 49 
Core – AI – E – ANOVA 9 36 29 34 43 
Method artifacts (AI), environmental (E), and inconsistent elements identified using stepwise linear discriminate 
analysis (SLDA) or analysis of variance (ANOVA) were removed (subtracted) from the set of core chemicals prior 
to the classification using the indicated models. In the “n” column, the number of components remaining is 
indicated. 

 
Table 6-3. The rate of correct classification for Monell Human Urine SPME Dataset    

VOC Sets Correct Classification Rates (%) by Cross Validation 
Set N LDA CDA GDA SVM 
Core – AI 415 90 48 90 93 
Core – AI – E 147 79 29 83 83 
Core – AI –SLDA 37 100 55 95 98 
Core – AI – E – SLDA 41 93 29 74 93 
Core – AI – ANOVA 309 93 50 90 95 
Core – AI – E – ANOVA 104 88 14 81 86 
Method artifacts (AI), environmental (E), and inconsistent elements identified using stepwise linear discriminate 
analysis (SLDA) or analysis of variance (ANOVA) were removed (subtracted) from the set of core chemicals prior 
to the classification using the indicated models. In the “n” column, the number of components remaining is 
indicated. 
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Table 6-4. The rate of correct classification for KL Human Twin Sweat Dataset    

VOC Sets Correct Classification Rates (%) by Cross Validation 
Set N LDA CDA GDA SVM 
Core – AI 100 14 11 5 7 
Core – AI – E 37 7 2 9 7 
Core – AI –SLDA 43 16 11 2 5 
Core – AI – E – SLDA 6 34 9 16 25 
Core – AI – ANOVA 44 30 18 25 36 
Core – AI – E – ANOVA 14 11 7 11 11 
Method artifacts (AI), environmental (E), and inconsistent elements identified using stepwise linear discriminate 
analysis (SLDA) or analysis of variance (ANOVA) were removed (subtracted) from the set of core chemicals prior 
to the classification using the indicated models. In the “n” column, the number of components remaining is 
indicated. 

 
The results indicate that statistical dimension reduction improves classification. Among 

ANOVA and SLDA, SLDA fared better than ANOVA most of the time. This can be explained 
by the nature of SLDA, which considers the covariance structure of the variables. 

Results also indicate that we successfully classified individual samples into the correct 
genotype 90% of the time when the number of genotypes was relatively small (less than 10). The 
method was less successful when applied to larger numbers of genotypes; however, the rates 
were still significantly higher than one would expect by chance alone. On the basis of these 
findings, we believe the success rates for larger numbers of genotypes would improve for larger 
sample sizes and greater precision among replicates. 

Among the four statistical methods, it can be seen that between the linear methods of 
LDA and CDA, LDA was superior in classification of the samples. The nonlinear methods also 
performed well in all four datasets. Nonetheless, SVM consistently performed better than did 
GDA. In our assessments, SVM performed similarly to LDA in our cases due to the limited 
sample size and the high dimensionality of the data. In effect, the sample sizes were insufficient 
to adequately reveal nonlinearity in the data. Thus, our recommended approach is Step-wise 
Linear Discriminant Analysis to select important components, and then to use LDA when the 
sample size is small and SVM when the sample size is moderate or large for classification 
purposes. 

6.2 Identified Compounds  

Application of the statistical classification methods to the providers’ data yielded a list of 
chemical species which exhibited discriminatory significance for a particular dataset. Table 6-5 
illustrates the distribution of chemicals within compound class across datasets. For example, of 
the 104 compounds identified in human urine as having a contribution to the discriminating 
ability, 8% of those were acids. 
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Table 6-5. Discriminatory Chemical Identities, Expressed as Percent of Total 

Compound 
Class 

Human 
Urine 

Mouse 
Urine 

Human 
Plasma 

Human 
Sweat 

Acids 8 5 22 -- 
Aldehydes 5 8 33 7 
Amines 6 16 -- -- 
Alcohols 26 14 11 29 
Esters 1 11 -- -- 
Ethers 9 3 11 36 
Hydrocarbons 7 8 11 21 
Hydroxyketones 1 3 -- 7 
Ketones 24 16 11 -- 
S-containing 7 14 -- -- 
Other 8 3 -- -- 
Total Chemicals 
Identified 

104 37 9 14 

 
Overall, sample medium appears to have a profound affect on the types of compounds 

which demonstrate discriminatory influence. Alcohols and ketones are predominant chemical 
classes for human urine, accounting for 50% of the discriminatory compounds; mouse urine has 
a much flatter distribution, where only 30 % of the distribution is accounted for by alcohols and 
ketones, with approximately one-third the total number of discriminatory compounds as was 
found for human urine. Human plasma exhibited only nine compounds with discriminatory 
characteristics, of which three were aldehydes and two were acids. Unlike human urine, human 
blood did not have several compound classes—including amines, esters, hydroxyketones, and 
sulfur-containing compounds—as discriminating features. Somewhat similarly, human sweat had 
a relatively small number of total compounds (14) and exhibited the smallest number of chemical 
classes. Note that the results in Table 6-5 are derived from a relatively small number of samples. 
The human urine data are derived from seven donors from two HLA supertypes (which we 
treated as seven unique HLA types). The mouse urine data are derived from a total of 20 rats 
from three strains (and, thus, three MHC types). The human plasma data are derived from 16 
donors with 13 unique HLA types. Finally, the sweat data are derived from 31 pairs of twins (22 
identical, 9 fraternal sets). Refinements in the distributions of chemicals are expected as the 
numbers of samples increase and the identifications are confirmed based on the GC/MS analysis 
of authentic chemical standards. 

The individual compound lists for each sample medium are presented in Tables 6-6 
through 6-9. The specific chemical species displayed in these lists represent the summarized 
results of the actual NIST library-assigned names, across all samples in a dataset. Furthermore, 
only those compounds included in the variable selection are presented. In many instances, very 
specific structural isomers are named and no attempt, other than that in Table 6-5, has been made 
to substitute more generic compound names (e.g., “methyl-substituted heptanone” for “6-methyl-
3-heptanone”). Unquestionably, the data processing scheme and the NIST identification contain 
sufficient uncertainty to warrant such a substitution, as the mass fragmentation patterns for 
structural isomers of a given compound are, in many cases, indistinguishable. Final confirmation 
of an identification in the unknown requires the co-elution of the compound with a known 
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chemical standard and that the unknown and the chemical standard each produce the same mass 
spectrum. 

Table 6-6. Chemical Species Identified in the Human Urine Data 
2(3H)-Furanone, 5-ethenyldihydro-5-methyl-  
2-Octenoic acid, cis-  
Benzene, ethoxy-  
3-(Methylthio)-2-butanone  
2-Pentanone, 4-hydroxy-  
Naphthalene, 1,2-dihydro-1,1,6-trimethyl-  
Furan, 2-ethyl-5-methyl-  
3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl-  
2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, cis-  
2-Cyclopenten-1-one, 2-methyl-  
Benzene, 1-ethenyl-4-methoxy-  
o-Hydroxybiphenyl  
5-Ethyl-2-furaldehyde  
1-Cyclohexene-1-methanol, 4-(1-methylethenyl)-  
Benzofuran, 4,7-dimethyl-  
Indole  
2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E)-  
Phenol, 4-ethyl-2-methoxy-  
3-Heptanone  
2-Pentanone  
2-Naphthalenemethanol, 2,3,4,4a,5,6,7,8-octahydro-.alpha.,.alpha.,4a,8-tetramethyl-  
Oxirane, 2-(hexyn-1-yl)-3-methoxymethylene-  
(+)-4-Carene  
7-Octen-2-ol, 2,6-dimethyl-  
cis-Z-.alpha.-Bisabolene epoxide  
1-Adamantaneacetic acid  
4-Oxepincarboxylic acid, 2,3,6,7-tetrahydro-, ethyl ester  
trans-3-Caren-2-ol  
4H-Imidazol-4-one, 2-amino-1,5-dihydro-  
2,6,6-Trimethyl-2-cyclohexene-1,4-dione  
Cyclobutanespiro-2'-bicyclo[1.1.0]butane-4'-spirocyclobutane  
Nonanal  
Hexanal  
3-Heptanone, 6-methyl-  
2H-Pyran-2-one, tetrahydro-6-methyl-  
Octanal  
Cyclohexanol, 1-methyl-4-(1-methylethenyl)-  
3-Hexanone  
Furan, 2,5-dimethyl-  
Acetic acid  
Benzenemethanol, 4-(1-methylethyl)-  
Methanethiol  
2,5-Furandione, 3-methyl-4-propyl-  
Furan, 2,4-dimethyl-  
Benzofuran, 2,3-dihydro-  
Thiophene, 2-methoxy-  

(continued) 
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Table 6-6.  Continued 
1,4-Cyclohexadiene-1-methanol, 4-(1-methylethyl)-  
2-Heptanone  
Ethanol, 2-phenoxy-  
Propanoic acid, 2,2-dimethyl-  
Dimethyl sulfone  
2H-1-Benzopyran, 3,4,4a,5,6,8a-hexahydro-2,5,5,8a-tetramethyl-(2.alpha.,4a.alpha.,8  
Propanoic acid, 2-methyl-  
Sulfide, allyl methyl  
Ethanone, 1-(1,4-dimethyl-3-cyclohexen-1-yl)-  
Ethanone, 1-(4-methylphenyl)-  
Benzeneacetaldehyde  
Hexanoic acid  
Tricyclo[2.2.1.0(2,6)]heptane-3-methanol, 2,3-dimethyl-  
Cyclohexanone  
3-Octanone  
3,6-Heptanedione  
Pyrazine, trimethyl-  
3-Heptenoic acid  
2(3H)-Furanone, dihydro-4,5-dimethyl-  
Propanoic acid  
Pyrazine, 2-ethenyl-6-methyl-  
(+)-3-Carene, 10-(acetylmethyl)-  
p-Mentha-1,5-dien-8-ol  
.+/-.-4-Acetyl-1-methylcyclohexene  
Ethanol, 2-(2-butoxyethoxy)-  
Phenol  
Formamide, N-phenyl-  
S-Ethyl ethanethioate  
1-Hexanol  
2H-1-Benzopyran, 3,4,4a,5,6,8a-hexahydro-2,5,5,8a-tetramethyl-(2.alpha.,4a.alpha.,8  
1,3-Benzodioxol-5-ol  
2,2,6,6,-Tetramethylcyclohexanone  
2H-1-Benzopyran, 3,5,6,8a-tetrahydro-2,5,5,8a-tetramethyl-, trans-  
N-Butyl-tert-butylamine  
2-Hexen-1-ol, (E)-  
3-Penten-2-one, 4-methoxy-  
2(3H)-Furanone, dihydro-3,5-dimethyl-  
Benzene, 4-ethenyl-1,2-dimethoxy-  
6-Hepten-3-one, 4-methyl-  
3,4-Dimethylcyclopentanone  
2-Pentanone, 3-ethyl-  
Naphthalene, 1,2-dihydro-1,1,6-trimethyl-  
1-Nonen-4-ol  
1H-Indene, 2,3-dihydro-1,1,5,6-tetramethyl-  
3-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-  
2,6-Dimethyl-1,3,5,7-octatetraene, E,E-  
2,6-Pyridinediamine  
Epicedrol  
trans,trans-3,5-Heptadien-2-one  

(continued) 
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Table 6-6.  Continued 
1-Pentanol  
2-Pentanone, 4-hydroxy-4-methyl-  
1,3-Cyclohexadiene-1-methanol, 4-(1-methylethyl)-  
2,6-Dimethyl-1,3,5,7-octatetraene, E,E-  
Caprolactam  
Propane, 1-(methylthio)-  
4-Octanone  
Tricyclo[4.4.0.0(2,7)]dec-8-ene-3-methanol, .alpha.,.alpha.,6,8-tetramethyl-, stere  
Phenylethyl Alcohol  

 
 

Table 6-7 . Chemical Species Identified in the Mouse Urine Data 
Ethanone, 1-(4,5-dihydro-2-thiazolyl)-  
Ethanone, 1-(1H-pyrrol-2-yl)-  
Formamide, N-(2-methylphenyl)-  
2-Amino-5-propyl-1,3,4-thiadiazole  
Cyclohexanol, 2,6-dimethyl-  
2-Penten-1-ol, acetate, (Z)-  
o-Toluidine  
1H-Pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-dione  
Ethanol, 2-butoxy-  
7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene  
1-Dodecanol  
2-Penten-1-ol, acetate, (Z)-  
Benzyl methyl ketone  
2-sec-Butylthiazole  
1,3-Oxathiane, 2-isopropyl-2,6-dimethyl-  
Propanoic acid, decyl ester  
Furan, 2-ethyl-5-methyl-  
Propanoic acid  
Trimethylamine  
7-Exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-ene  
6,8-Dioxabicyclo[3.2.1]octane, 7-ethyl-5-methyl-, (1R-exo)  
Butanoic acid  
3-Heptanone, 6-methyl-  
n-Dodecyl acetate  
Octanal  
Ethanone, 1-(4,5-dihydro-2-thiazolyl)-  
5,8-Decadien-2-one, 5,9-dimethyl-, (E)-  
3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl-  
Thiourea  
o-Xylene  
Hexenal, 2-ethyl-  
1-Hexadecanol  
4-Octen-3-one, 6-ethyl-7-hydroxy-  
Iminoformamide,N,N-dimethyl-N'-(3-methyl-2-oxotetrahydro-3  
6-Hepten-3-one, 4-methyl-  
Hexenal, 2-ethyl-  
2-Piperidinone  
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Table 6-8. Chemical Species Identified in the Human Plasma Data 
Octanoic Acid  
5-Hepten-2-one, 6-methyl-  
Hexanal  
2,4-Dimethyl-1-heptene  
Nonanal  
Hexadecanal  
3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-  
Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-  
Furan, 2-pentyl-  

 
 

Table 6-9. Chemical Species Identified in the Human Sweat Data 
Decanal  
2-Butanone, 3-hydroxy-  
Ethanol, 2-(2-butoxyethoxy)-  
2,6-Octadien-1-ol, 3,7-dimethyl-, (E)-  
Acetic acid, phenylmethyl ester  
Benzyl Benzoate  
Cyclohexane, propyl-  
n-Hexyl salicylate  
Benzeneethanol, .alpha.,.alpha.-dimethyl-, acetate  
1,6-Octadien-3-ol, 3,7-dimethyl-  
4-tert-Butylcyclohexyl acetate  
Dodecane  
Ethanol, 2-butoxy-  
Decane  
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Reports/Presentations Prepared During the Project 
 
 
1. Monthly reports from July 2003 through February 2005. 

2. Quarterly Report Presentations: 

a. October 2003 

b. February 2004 

c. June 2004 

d. October 2004 

3. Semi-Annual Reports 

a. January 2004 

b. August 2004 

4. Report on Statistical Analysis Workshop held at RTI in May 2004 

5. Annual Report  March 2004 

6. USD Milestone Presentation  October 2004 

7. USD PI Meeting presentations 

a. August 2003 

b. April 2004 

c. August 2004 

d. January 2005 

 
There was also one poster presented at a meeting:  
 
Raymer, J. H ., J. Deese-Spruill, T. Marrero, M. Rice.  Collection and Analysis of Volatile 

Organic Compounds (VOCs) from Human Sweat.  Presented at the Annual Meeting of 
the ISEA, Philadelphia, October 2004.  
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Instructions for Operation of the Package 
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Operation Instructions 
 
 
This document contains instructions for processing and analyzing each experiment’s data. These 
instructions assume that the user: 
 

• is familiar with our data processing and analysis procedures as described in the Final 
Technical Report, 

• has access to and is familiar with the software packages and programming languages 
used in these procedures, including: 

o Microsoft Excel XP; 
o SAS version 8.02; 
o Matlab release 14 (some programs were executed in release 11, but should be 

forward compatible to release 14) 
o NIST/EPA/NIH Mass Spectral Library (NIST 02), 
o NIST Mass Spectral Search Program version 2.0a, 
o AMDIS version 2.6, and 
o GC/MS instrument software; and 

• has access to the files described in this document. 
 
All programs have been run under the Microsoft Windows environment—either Windows 2000 
or Windows XP Professional; no other operating systems have been tested. 
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Table A-1.  Processing and Analysis Steps for Each Experiment 
Step Processing/Analysis Step Description Relevant Files or Software Parameters or Settings 

1 Convert the raw data files to CDF format. [2.b.i.] instrument software software dependent 
2 Complete the experiment map. The experiment map assigns 

an analysis file name to every raw data file in the 
experiment. The analysis file name follows a common 
naming convention across all experiments and incorporates 
elements of the experimental design, such as genetic type, 
donor ID, and sample number. The map also lists the 
directory locations of all raw data files and CDF data files. 

dcc\Konrad_Lorenz\Analysis\KL 
Experiment Map.xls 

n/a 

3 Smooth the data if necessary. [2.b.iii.]   
 a Convert all the CDF files to Matlab. dcc\Konrad_Lorenz\Analysis\Experime

nt01\Smoothing\convert_matlab*.m 
none 

 b Smooth the data and output revised CDF data files. dcc\Konrad_Lorenz\Analysis\Experime
nt01\Smoothing\smooth_all*.m 

Set the parameters for the Savitzky-Golay 
smoothing algorithm in the call to the 
sgolayfilt function. 

4 Run AMDIS on all the CDF data files. [2.b.ii.] AMDIS version 2.6 We ran our analyses with the following 
deconvolution settings: Resolution = Low, 
Sensitivity = Very Low, Shape requirements 
= Medium. We also set the Analysis Type to 
Simple. All other settings remained at their 
defaults. 

5 Create a DOS batch file that will copy all the AMDIS-
generated files into the Analysis folder and rename them 
using the appropriate analysis filename. 

01_create_batch_file.sas None 

6 Run the batch file created in the previous step. 02_copy_amdis_output.bat None 
7 Parse all the AMDIS output and create a single SAS dataset 

containing the results. 
03_process_components.sas Several parameters can be set when parsing 

the AMDIS output. See the file 
dcc\production\processing\parse_amdis_comp
onent.sas for a full list. The most important 
parameters to set are the minimum and 
maximum m/z values in the file, which are set 
in the call to the %parse_amdis_components 
macro. We recommend leaving the other 
parameters set the way they are in the 
03_process_components.sas file.  

8 Locate the internal standard(s) in all the files. [2.b.iv.1.] 04_find_internal_standards.sas For each standard, enter the expected 
retention time, the retention time search 
window, and the expected mass spectrum. 
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Step Processing/Analysis Step Description Relevant Files or Software Parameters or Settings 
9 While searching for internal standards, if any files are 

identified as being “bad” files for some reason, remove 
them from the analysis. [2.b.iv.1.] 

05_remove_bad_files.sas Enter the list of filenames that should be 
removed from analysis. 

10 Locate a few landmarks, which are components detected in 
most of the files but are not internal standards. [2.b.iv.1.] 

06_find_landmarks.sas For each landmark, enter the expected 
retention time, the retention time search 
window, and the expected mass spectrum. 

11 Perform a coarse alignment by stretching and compressing 
each of the files so that the internal standards and 
landmarks have exactly the same retention time across all 
files. [2.b.iv.2.] 

07_coarse_alignment.sas None 

12 Use multidimensional clustering to match components 
across files, creating clusters of like components. [2.b.iv.3.] 

08_cluster_components.sas Set the retention time weight, the cluster 
radius, and the maximum number of clusters 
in the call to the 
%multidimensional_clustering macro. 

13 Normalize each component’s area by the area of the 
internal standard. [2.b.viii.] 

09_quantify_components.sas None 

14 Find the core clusters; use a variety of consistency criteria, 
if applicable. [2.b.v.] 

10_find_core_components.sas Define the genetic types, donors, samples, and 
replicates at the top of the program. Define 
the range of consistency criteria in the call to 
the %loop_core macro. 

15 Create text files containing the spectra of all components in 
the core clusters. These files will be used as input into the 
NIST library search. 

11_find_core_spectra.sas None 

16 Run the spectra files generated in the previous step through 
the NIST library search. Output the search results to text 
files. [2.b.vi.] 

NIST Mass Spectral Search Program 
version 2.0a 

Set the system printer to “Generic/Text Only” 
and orientation to “Landscape.” Select 
Library Search Options under Tools and 
select the Automation tab. Set Number of Hits 
to Print to “2.” In the same dialog, select the 
Search tab and select the Automation and 
Auto Report checkboxes. In the main program 
view, select the “Lib. Search” tab and open 
the appropriate *.msp file. Select “Import All” 
in the dialog box and “Overwrite the Spec 
List contents.” One output file will be created 
for each spectral search. 

17 Parse all the NIST search output and create a single SAS 
dataset containing the results. 

11a_nistsearch2.sas Set the number of input files at the top of the 
program. 
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Step Processing/Analysis Step Description Relevant Files or Software Parameters or Settings 
18 For each cluster, produce a frequency distribution showing 

how often each NIST compound was a search result. 
[2.b.vii.] 

11b_freq_nisttest.sas None 

19 Decide which clusters should be flagged as impossible or 
environmental. [2.b.vii., 3.a.] 

dcc\Michael\Code\nistfreq.sas; 
dcc\Michael\Code\environ.wk3 

Define the SAS dataset to be imported at the 
top of the nistfreq.sas program. 

20 Create a dataset indicating which clusters are flagged as 
impossible, environmental, and heterogeneous. [2.b.vii., 
3.a.] 

11c_filtered_clusters.sas None 

21 Perform variable selection using ANOVA. [3.b.i.] 12_reduction_anova.sas None 
22 Perform variable selection using SLDA. [3.b.ii.] 15_reduction_slda.sas Set the number of core clusters at the top of 

the program. 
23 Find correct classification rates with cross-validation using 

LDA. [4.a.i.] 
15_lda_cross.sas Set the number of core clusters at the top of 

the program. 
24 Find correct classification rates with cross-validation using 

CDA. [4.a.ii.] 
15_cda_cross.sas Set the number of core clusters at the top of 

the program. 
25 Create training and testing files for use with SVM and 

GDA, which are implemented in Matlab. 
dcc\Development\Analysis\Test_data\
KL01_data\CV_log_transform\CV_KL
01data_log_transform.sas 

none 

26 Find correct classification rates with cross-validation using 
SVM. [4.b.i.] 

dcc\Development\Analysis\Test_data\
KL01_data\CV_log_transform\SVM\S
VM_KL01_CV_log_transform.m 

Set the options for the SVM algorithm in the 
lines immediately before the calls to the 
oaasvm function. 

27 Find correct classification rates with cross-validation using 
GDA. [4.b.ii.] 

dcc\Development\Analysis\Test_data\
KL01_data\CV_log_transform\GDA\G
DA_KL01_CV_log_transform.m 

Set the options for the GDA algorithm in the 
lines immediately before the calls to the gda 
function. 

 
Notes: 
 
• Section references from the Final Technical Report are listed in brackets after applicable step descriptions.  
• The programs listed here apply to the KL Twin Sweat data, which we have designated as KL Experiment #1. This entire set of programs (with the exception 

of the smoothing step) has also been run for Monell Experiment #4, Draper Experiment #5, and Draper Experiment #7. Programs written for those 
experiments are included in the software transfer but are not described here because they are very similar. 

• Files are located in dcc\Konrad_Lorenz\Analysis\Experiment01 unless the full path name is provided. 
• Numeric prefixes in file names and the file names themselves may be slightly different for other experiments. 
• Input and output files are listed in program headers. In addition, most of the programs require entering the input and output files near the top or bottom of the 

program. This is assumed in the Parameters or Settings column and is not be repeated for every row of the table. 
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Table B-1.  File Names, Locations, and Descriptions 
File Name and Location File Description 
  
Contents.doc Lists all the files included in the delivery. 
Operation Instructions.doc Provides instructions for using these files to process and analyze data. 
  
dcc\libnames.inc Defines folder locations and SAS libnames for processing and analysis tasks. 
  
dcc\Development\Analysis\Test_data\D05_data\CV_log_transform\CV_D05d
ata_log_transform.sas 

Creates training and testing files for use with SVM and GDA. 

dcc\Development\Analysis\Test_data\D05_data\CV_log_transform\GDA\GD
A_D05_CV_log_transform.m 

Finds correct classification rates with cross-validation using GDA. 

dcc\Development\Analysis\Test_data\D05_data\CV_log_transform\SVM\SV
M_D05_CV_log_transform.m 

Finds correct classification rates with cross-validation using SVM. 

  
dcc\Development\Analysis\Test_data\D07_data\CV_log_transform\CV_D07d
ata_log_transform.sas 

Creates training and testing files for use with SVM and GDA. 

dcc\Development\Analysis\Test_data\D07_data\CV_log_transform\GDA\GD
A_D07_CV_log_transform.m 

Finds correct classification rates with cross-validation using GDA. 

dcc\Development\Analysis\Test_data\D07_data\CV_log_transform\SVM\SV
M_D07_CV_log_transform.m 

Finds correct classification rates with cross-validation using SVM. 

  
dcc\Development\Analysis\Test_data\KL01_data\CV_log_transform\CV_KL
01data_log_transform.sas 

Creates training and testing files for use with SVM and GDA. 

dcc\Development\Analysis\Test_data\KL01_data\CV_log_transform\GDA\G
DA_KL01_CV_log_transform.m 

Finds correct classification rates with cross-validation using GDA. 

dcc\Development\Analysis\Test_data\KL01_data\CV_log_transform\SVM\S
VM_KL01_CV_log_transform.m 

Finds correct classification rates with cross-validation using SVM. 

  
dcc\Development\Analysis\Test_data\M04_data\CV_log_transform\CV_M04
data_log_transform.sas 

Creates training and testing files for use with SVM and GDA. 

dcc\Development\Analysis\Test_data\M04_data\CV_log_transform\GDA\GD
A_M04_CV_log_transform.m 

Finds correct classification rates with cross-validation using GDA. 

dcc\Development\Analysis\Test_data\M04_data\CV_log_transform\SVM\SV
M_M04_CV_log_transform.m 

Finds correct classification rates with cross-validation using SVM. 

  
dcc\Draper\Analysis\Draper Experiment Map.xls Provides an experiment map for Draper. 
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File Name and Location File Description 
dcc\Draper\Analysis\Experiment05\01_create_batch_file.sas Creates a DOS batch file that will copy all the AMDIS-generated files into 

the Analysis folder and rename them using the appropriate analysis file 
name. 

dcc\Draper\Analysis\Experiment05\02_copy_amdis_output.bat Provides the batch file created in the previous step. 
dcc\Draper\Analysis\Experiment05\03_process_components.sas Parses all the AMDIS output and create a single SAS dataset containing the 

results. 
dcc\Draper\Analysis\Experiment05\04_find_internal_standards.sas Locates the internal standard(s) in all the files. 
dcc\Draper\Analysis\Experiment05\05_remove_bad_files.sas Removes any “bad” files from the analysis. 
dcc\Draper\Analysis\Experiment05\06_find_landmarks.sas Locates a few landmarks, which are components detected in most of the files 

but are not internal standards. 
dcc\Draper\Analysis\Experiment05\07_coarse_alignment.sas Performs a coarse alignment by stretching and compressing each of the files 

so that the internal standards and landmarks have exactly the same retention 
time across all files. 

dcc\Draper\Analysis\Experiment05\08_cluster_components.sas Uses multidimensional clustering to match components across files, creating 
clusters of like components. 

dcc\Draper\Analysis\Experiment05\09_quantify_components.sas Normalizes each component’s area by the area of the internal standard. 
dcc\Draper\Analysis\Experiment05\10_find_core_components.sas Finds the core clusters; uses a variety of consistency criteria, if applicable. 
dcc\Draper\Analysis\Experiment05\11_find_core_spectra.sas Creates text files containing the spectra of all components in the core 

clusters. These files will be used as input into the NIST library search. 
dcc\Draper\Analysis\Experiment05\12_nist_search.sas Parses all the NIST search output and creates a single SAS dataset containing 

the results. 
dcc\Draper\Analysis\Experiment05\13_freq_nist.sas For each cluster, produces a frequency distribution showing how often each 

NIST compound was a search result. 
dcc\Draper\Analysis\Experiment05\14_filtered_clusters.sas Creates a dataset indicating which clusters are flagged as impossible, 

environmental, and heterogeneous. 
dcc\Draper\Analysis\Experiment05\15_reduction_anova.sas Performs variable selection using ANOVA. 
dcc\Draper\Analysis\Experiment05\16_cda_cross.sas Finds correct classification rates with cross-validation using CDA. 
dcc\Draper\Analysis\Experiment05\16_lda_cross.sas Finds correct classification rates with cross-validation using LDA. 
dcc\Draper\Analysis\Experiment05\16_reduction_SLDA.sas Performs variable selection using SLDA. 
  
dcc\Draper\Analysis\Experiment07\01_create_batch_file.sas Creates a DOS batch file that will copy all the AMDIS-generated files into 

the Analysis folder and rename them using the appropriate analysis file 
name. 

dcc\Draper\Analysis\Experiment07\02_copy_amdis_output.bat Provides the batch file created in the previous step. 
dcc\Draper\Analysis\Experiment07\03_process_components.sas Parses all the AMDIS output and create a single SAS dataset containing the 

results. 
dcc\Draper\Analysis\Experiment07\04_find_internal_standards.sas Locates the internal standard(s) in all the files. 
dcc\Draper\Analysis\Experiment07\05_remove_bad_files.sas Removes any “bad” files from the analysis. 
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File Name and Location File Description 
dcc\Draper\Analysis\Experiment07\06_find_landmarks.sas Locates a few landmarks, which are components detected in most of the files 

but are not internal standards. 
dcc\Draper\Analysis\Experiment07\07_coarse_alignment.sas Performs a coarse alignment by stretching and compressing each of the files 

so that the internal standards and landmarks have exactly the same retention 
time across all files. 

dcc\Draper\Analysis\Experiment07\08_cluster_components.sas Uses multidimensional clustering to match components across files, creating 
clusters of like components. 

dcc\Draper\Analysis\Experiment07\09_quantify_components.sas Normalizes each component’s area by the area of the internal standard. 
dcc\Draper\Analysis\Experiment07\10_find_core_components.sas Finds the core clusters. Uses a variety of consistency criteria, if applicable. 
dcc\Draper\Analysis\Experiment07\11_find_core_spectra.sas  Creates text files containing the spectra of all components in the core 

clusters. These files will be used as input into the NIST library search. 
dcc\Draper\Analysis\Experiment07\11a_nistsearch2.sas Parses all the NIST search output and creates a single SAS dataset containing 

the results. 
dcc\Draper\Analysis\Experiment07\11b_freq_nisttest.sas For each cluster, produces a frequency distribution showing how often each 

NIST compound was a search result. 
dcc\Draper\Analysis\Experiment07\11c_filtered_clusters.sas Creates a dataset indicating which clusters are flagged as impossible, 

environmental, and heterogeneous. 
dcc\Draper\Analysis\Experiment07\13_cda_cross.sas Finds correct classification rates with cross-validation using CDA. 
dcc\Draper\Analysis\Experiment07\13_lda_cross.sas Finds correct classification rates with cross-validation using LDA. 
dcc\Draper\Analysis\Experiment07\13_reduction_slda.sas Performs variable selection using SLDA. 
dcc\Draper\Analysis\Experiment07\14_reduction_anova.sas Performs variable selection using ANOVA. 
  
dcc\Konrad_Lorenz\Analysis\KL Experiment Map.xls Provides an experiment map for Konrad Lorenz. 
  
dcc\Konrad_Lorenz\Analysis\Experiment01\01_create_batch_file.sas Creates a DOS batch file that will copy all the AMDIS-generated files into 

the Analysis folder and rename them using the appropriate analysis file 
name. 

dcc\Konrad_Lorenz\Analysis\Experiment01\02_copy_amdis_output.bat Provides the batch file created in the previous step. 
dcc\Konrad_Lorenz\Analysis\Experiment01\03_process_components.sas Parses all the AMDIS output and create a single SAS dataset containing the 

results. 
dcc\Konrad_Lorenz\Analysis\Experiment01\04_find_internal_standards.sas Locates the internal standard(s) in all the files. 
dcc\Konrad_Lorenz\Analysis\Experiment01\05_remove_bad_files.sas Removes any “bad” files from the analysis. 
dcc\Konrad_Lorenz\Analysis\Experiment01\06_find_landmarks.sas Locates a few landmarks, which are components detected in most of the files 

but are not internal standards. 
dcc\Konrad_Lorenz\Analysis\Experiment01\07_coarse_alignment.sas Performs a coarse alignment by stretching and compressing each of the files 

so that the internal standards and landmarks have exactly the same retention 
time across all files. 
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File Name and Location File Description 
dcc\Konrad_Lorenz\Analysis\Experiment01\08_cluster_components.sas Uses multidimensional clustering to match components across files, creating 

clusters of like components. 
dcc\Konrad_Lorenz\Analysis\Experiment01\09_quantify_components.sas Normalizes each component’s area by the area of the internal standard. 
dcc\Konrad_Lorenz\Analysis\Experiment01\10_find_core_components.sas Finds the core clusters; uses a variety of consistency criteria, if applicable. 
dcc\Konrad_Lorenz\Analysis\Experiment01\11_find_core_spectra.sas  Creates text files containing the spectra of all components in the core 

clusters. These files will be used as input into the NIST library search. 
dcc\Konrad_Lorenz\Analysis\Experiment01\11a_nistsearch2.sas Parses all the NIST search output and creates a single SAS dataset containing 

the results. 
dcc\Konrad_Lorenz\Analysis\Experiment01\11b_freq_nisttest.sas For each cluster, produces a frequency distribution showing how often each 

NIST compound was a search result. 
dcc\Konrad_Lorenz\Analysis\Experiment01\11c_filtered_clusters.sas Creates a dataset indicating which clusters are flagged as impossible, 

environmental, and heterogeneous. 
dcc\Konrad_Lorenz\Analysis\Experiment01\12_reduction_anova.sas Performs variable selection using ANOVA. 
dcc\Konrad_Lorenz\Analysis\Experiment01\15_cda_cross.sas Finds correct classification rates with cross-validation using CDA. 
dcc\Konrad_Lorenz\Analysis\Experiment01\15_lda_cross.sas Finds correct classification rates with cross-validation using LDA. 
dcc\Konrad_Lorenz\Analysis\Experiment01\15_reduction_slda.sas Performs variable selection using SLDA. 
  
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\convert_matlab1.m Converts CDF files to Matlab. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\convert_matlab2.m Converts CDF files to Matlab. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\convert_matlab3.m Converts CDF files to Matlab. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\convert_matlab4.m Converts CDF files to Matlab. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\convert_matlab5.m Converts CDF files to Matlab. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\smooth_all.m Smooths the data and outputs revised CDF data files. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\smooth_all2.m Smooths the data and outputs revised CDF data files. 
dcc\Konrad_Lorenz\Analysis\Experiment01\Smoothing\smooth_all3.m Smooths the data and outputs revised CDF data files. 
  
dcc\Michael\Code\environ.wk3 Provides a database of compound names that are considered environmental. 
dcc\Michael\Code\NistFreq.sas Decides which clusters should be flagged as impossible or environmental. 
  
dcc\Monell\Analysis\Monell Experiment Map.xls Provides an experiment map for Monell. 
  
dcc\Monell\Analysis\Experiment04\01_create_batch_file.sas Creates a DOS batch file that will copy all the AMDIS-generated files into 

the Analysis folder and rename them using the appropriate analysis file 
name. 

dcc\Monell\Analysis\Experiment04\02_copy_amdis_output.bat Provides the batch file created in the previous step. 
dcc\Monell\Analysis\Experiment04\03_process_components.sas Parses all the AMDIS output and create a single SAS dataset containing the 

results. 
dcc\Monell\Analysis\Experiment04\04_find_internal_standards.sas Locates the internal standard(s) in all the files. 
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File Name and Location File Description 
dcc\Monell\Analysis\Experiment04\05_remove_bad_files.sas Removes any “bad” files from the analysis. 
dcc\Monell\Analysis\Experiment04\06_find_landmarks.sas Locates a few landmarks, which are components detected in most of the files 

but are not internal standards. 
dcc\Monell\Analysis\Experiment04\07_coarse_alignment.sas Performs a coarse alignment by stretching and compressing each of the files 

so that the internal standards and landmarks have exactly the same retention 
time across all files. 

dcc\Monell\Analysis\Experiment04\08_cluster_components.sas Uses multidimensional clustering to match components across files, creating 
clusters of like components. 

dcc\Monell\Analysis\Experiment04\09_quantify_components.sas Normalizes each component’s area by the area of the internal standard. 
dcc\Monell\Analysis\Experiment04\10_find_core_components.sas Finds the core clusters; uses a variety of consistency criteria, if applicable. 
dcc\Monell\Analysis\Experiment04\11_find_core_spectra.sas Creates text files containing the spectra of all components in the core 

clusters. These files will be used as input into the NIST library search. 
dcc\Monell\Analysis\Experiment04\12_nist_search.sas Parses all the NIST search output and creates a single SAS dataset containing 

the results. 
dcc\Monell\Analysis\Experiment04\13_freq_nist.sas For each cluster, produces a frequency distribution showing how often each 

NIST compound was a search result. 
dcc\Monell\Analysis\Experiment04\14_filtered_clusters.sas Creates a dataset indicating which clusters are flagged as impossible, 

environmental, and heterogeneous. 
dcc\Monell\Analysis\Experiment04\15_reduction_anova.sas Performs variable selection using ANOVA. 
dcc\Monell\Analysis\Experiment04\16_cda_cross.sas Finds correct classification rates with cross-validation using CDA. 
dcc\Monell\Analysis\Experiment04\16_lda_cross.sas Finds correct classification rates with cross-validation using LDA. 
dcc\Monell\Analysis\Experiment04\16_reduction_slda.sas Performs variable selection using SLDA. 
  
dcc\Production\macro_dde_excel.sas Contains macros for working with Excel workbooks. 
dcc\Production\macro_stringops.sas Contains macros for dealing with lists of variable names. 
  
dcc\Production\Processing\check_cluster.sas Contains a diagnostic macro for checking the results of the multidimensional 

clustering. 
dcc\Production\Processing\check_cluster_replicates.sas Contains a diagnostic macro for checking the results of the multidimensional 

clustering. 
dcc\Production\Processing\coarse_alignment.sas Contains a macro for performing the coarse alignment procedure. 
dcc\Production\Processing\convert_cdf.m Contains a function for converting a CDF file to a Matlab dataset and a text 

file. 
dcc\Production\Processing\convert_mat_to_txt.m Contains a function for converting an intensity matrix from a Matlab dataset 

to a text file. 
dcc\Production\Processing\COPYING Contains the GNU General Public License, the license under which the 

sgolayfilt.m file was released. 
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File Name and Location File Description 
dcc\Production\Processing\copy_amdis_output.sas Contains a macro for creating the DOS batch file that copies all the AMDIS-

generated files into the Analysis folder and renames them using the 
appropriate analysis file name. 

dcc\Production\Processing\find_target.sas Contains a macro for searching AMDIS results for a particular compound. 
dcc\Production\Processing\multidimensional_clustering.sas Contains a macro for performing the multidimensional clustering procedure. 
dcc\Production\Processing\parse_amdis_components.sas Contains a macro for parsing .elu files output by AMDIS. 
dcc\Production\Processing\sgolayfilt.m Contains a function for performing Savitzky-Golay smoothing. 
dcc\Production\Processing\write_revised_cdf.m Contains a function for revising the intensity matrix of a CDF file. 
 

 


